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ABSTRACT
In this paper, a non-linear mathematical model for computational dynamics and optimal control of Toxoplasmosis disease in human and
cat populations is formulated and analysed. The steady states of the equilibrium points are determined and found to be locally
asymptotically stable if the threshold parameter is less than unity and unstable if it is greater than unity. However the analysis shows that
the endemic equilibrium point is globally asymptotically stable if the threshold parameter is greater than unity. The basic reproduction
number of the model is determined. Two control measures: (vaccination and quarantine of infected humans) and (vaccination and
quarantine of infected cats) are incorporated to the model and analysed in order to determine the optimal control. Numerical simulations
of the model in the presence of control measures are finally performed. The results show that in the presence of optimal control, the
Toxoplasmosis Disease can be eliminated in the Society.
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INTRODUCTION

Toxoplasmosis is an infection of warm-blooded vertebrates caused by the obligate intracellular protozoan parasite, toxoplsama
gondii. It is one of the most common parasitic human diseases which has infected approximately one-third of the world’s
population (Kistiah et al., 2012). The protozoan toxoplasma gondii is a prevalent parasite in wild and domestic animals
worldwide, especially in cats, being transmitted through the food chain by carnivorous feeding and scavenging (Beaver et al.,
1984). Its life cycle include asexual multiplication in various tissues of intermediate hosts and sexual reproduction in the intestine
of definitive hosts. Intermediate hosts are probably all warm-blooded animals including all livestock and animals, while definitive
hosts are members of the family felidae, for example, domestic cats (Tenter, 2009). The infection is mainly acquired by ingestion
of undercooked or raw meat containing viable tissue cysts and/or by ingestion of food and water that are contaminated with
oocysts shed by felis (Dubey and Jones, 2008). Also, humans can inadvertently ingest oocysts that cats have passed in their feces,
either from a little box or from soil (soil from gardening, unwashed fruits or unfiltered water). Further, women can transmit the
infection transplacentally to their unborn fetus (Jones et al., 2003). To prevent toxoplasmosis and other food-borne illnesses, food
should be cooked at a safe temperature (  71.10C). Optimal Control is the process of determining control and state trajectories for
a dynamic system, over a period of time, in order to optimize a given performance index (Rodrigues et al., 2014). Since the
financial resources are limited, optimal control is used to optimize investments for disease prevention. In dynamical systems, a
typical optimal control problem for ordinary differential equations is described by the state equation
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where  u t is the control and
ig are the state variables which depend on the control variables in a time t , with

0 ft t t  . The

main goal is to find a piecewise continuous control variable  u t and the associated state variables
ig in order to maximize or

minimize the given objective functional subject to some constraints (Rodrigues et al., 2012).
The basic optimal control problem used to minimize the objective function is given by,
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where a and b are fixed real constants and a b ,  fg t is free, which implies that the value of  fg t is unrestricted or fixed.

Such a minimizing control is called an optimal control (Lenhart and Workman, 2007). The technique involved in the optimal
control problem is to solve a set of necessary conditions that an optimal control and the corresponding state must satisfy.
Pontryagin’s maximum principle provides necessary conditions for the optimal control using Hamiltonian H (Pontryagin’s et al.,
1962), which is defined as:
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where i are the adjoint variables or co-state variable and n is the number of the thi state variables. If  *u t
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equation (2), subject to some ordinary differential equations defining the given dynamical systems, then there exists a piecewise
differentiable adjoint variable  such that:
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It is then intended to optimise the given objective functional, subject to some constraints (Evans, 2006, Lenhart and Workman,
2007).

Model Formulation

The Basic Model: Arena et al., (2009) studied the dynamics of a toxoplasmosis disease in human and cat populations. Their
results revealed that the dynamics of toxoplasmosis disease is strongly influenced by both the horizontal transmission and vertical
transmission in human and cat populations respectively. Their results also revealed that the control strategy to reduce
toxoplasmosis prevalence should focus on reducing the infection through vaccine program for cat populations. However Arena et
al. (2009) analysed the dynamics of toxoplasmosis disease in human and cat populations without applying any control strategies.
Hence this study intends to incorporate the optimal control strategies on the disease dynamics of toxoplasmosis infections through
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vaccination and quarantine to both human and cat populations. Therefore a nonlinear mathematical model is proposed and
analysed to study the dynamics of toxoplasmosis disease in human and cat populations.

Model Assumptions

The following assumptions are considered in model formulation:

 Toxoplasma gondii occurs in the population when there is a direct or indirect contact between the susceptible human and
infected cats,

 There is no human to human transmission,
 Infected human enters the recovery class  R t at a rate of  ,

 The susceptible cat is infected when there is a direct contact with infected vector (cat),
 The population is assumed to be constant to both human and cat since their birth rates and death rates are equal,
 The susceptible human population  1S t and susceptible cat population  2S t have the same probabilities of being infected.

The model divides the population into two sub populations: the human population and the vector (cat) population. Human
population

1N is divided into three groups: humans being at risk of being infected by toxoplasmosis disease  1S , humans being

infected by toxoplasmosis  1I and humans who have recovered from toxoplasmosis  R . The vector (cat) population is divided

into two groups: the susceptible cats which have not yet been infected by toxoplasmosis disease ,  2S and cats already infected by

toxoplasmosis disease  2I (Arena et al., 2009). The new infection occurs in both populations when the susceptible human

population and infected cat population come into contact. With,  2 tN , the total cat population at time t , Q , recruitment rate of

susceptible humans,  , recruitment rate of susceptible cats,
1 , disease transmission rate to the susceptible human by infected

cats,
2 , disease transmission rate to the susceptible cat by infected cat,  , the rate of progression to susceptible human from

recovery,
1 , human natural death rate,

2 , cat natural death rate,
1m , the human death rate due to disease,

2m , the cat death rate

due to disease,
1u , the control measure to human due to vaccination and quarantine of infected human,

2u the control measure to

cat due to vaccination and quarantine of infected cat and taking into account of the above considerations and assumptions, we have
the following schematic flow diagram:

Figure 1. Compartmental Diagram for a Toxoplasmosis Model

From the above flow diagram, the dynamics of the disease is governed by the following system of nonlinear ordinary differential
equations:
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 2
2 22 22 2

t

d I
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d
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with initial conditions  1 00S S ,  1 00I I ,   00R R ,  2 00S S ,  2 00I I .

The total populations for human and vector (cat) population are

11 1 RN S I   , (5)

22 2 .N S I  (6)

Model Analysis: The model system (4) will be analysed qualitatively to get insight to its dynamical features which give a better
understanding of toxoplasmosis disease in human and cat populations.

Invariant Region: The model under consideration involves human population and vector (cat) populations. Therefore, it is
assumed that all the variables and parameters in the model are positive for all 0t  . The total populations can be determined by

11 1 RN S I   and 22 2N S I  respectively. Then we have the following Lemma.

Lemma 1: The solution set   5
1 21 2, , , ,RS SI I  of system (4) is contained in the feasible region  .

Proof:

If N is the total population size, then
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It follows that
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For the human population, we have
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The differential equation (7) has a solution
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Similarly, for vector (cat) population, we have:
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As t , we have
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 , then the basic Mathematical model is well posed and it is mathematically relevant; hence it is sufficient

to study the dynamics of the epidemiological system (4) in the region  .

Positivity of Solutions

Lemma 2: If the initial Solution of a dynamical model (4) is           1 21 20 , 0 , 0 , 0 , 0 0RS SI I   , then the solution set

          1 21 2, , , ,t t R t t tS SI I of the model system (4) is positive for all 0.t 

Proof:

From the first equation of the model system (4), we have
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1 0S  .

Similarly using the other equations of system (4), positivity of solutions can be established. Hence, all the solutions of the system
(4) are positive for all 0t  .

Disease free Equilibrium Point (DFE): The Equilibrium point of the system (4) can be established by setting
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At the steady state, 1 21 2 0RS SI I     . Therefore from the model system (14), the disease free equilibrium
0E is
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The Basic Reproduction Number 0 : The basic reproduction number 0 , is defined as the average number of secondary cases

produced by a “typical” infected (assumed infectious) individual during his/her entire life of infectious period when introduced in
a population of susceptibles (Dierkman and Heesterbeek, 1990). Also, Dierkman et al. (1990) defined the basic reproduction
number 0 , as the spectral radius  1   

 
FV of the next generation matrix.
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This can be expressed by a threshold parameter such that, if the DFE is locally asymptotically stable, then the disease cannot
invade the population and 0 1 , whereas, if the number of infected individuals grow, the disease can invade the population and

0 1 (Driessche and Watmough, 2008).

0 can be obtained through computation of Eigen values of the Jacobian matrix using next generation operator matrix (Driessche

and Watmough, 2002), which is obtained by taking the largest (dominant) eigenvalue (spectral radius) of
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where  i xF is the rate of new infections entering compartment i ,  i xV is the rate of transfer into compartment i by any other

means and  i xV is the rate of transfer out of compartment i and 0E is the disease free equilibrium. Also, it is assumed that each
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 
 



  
 
 
  
      
 
 
 
 
 
  

FV

(22)

The Eigen values of (22) are given by

 
2

1, 2, 3, 4, 5
22 2

0,  0,  0,  0,
m

 


 

      
(23)

Therefore the basic reproduction number 0 is given by

 
2

0
22 2

.
m

 
 



(24)

Stability Analysis of Disease Free Equilibrium Point

Lemma 3: If
0 1 , the disease free equilibrium point of the model is locally asymptotically stable and unstable if

0 1
(Driessche and Watmough, 2008).

The stability of disease free equilibrium point is established by linearization of the system of ordinary differential equations.
We linearize the model system (4) and compute its Jacobian matrix EJ as follows:

1 1 1 1 1

1 21 2

2 2 2 2 2

1 21 2

3 3 3 3 3

1 21 2

4 4 4 4 4

1 21 2

5 5 5 5 5

1 21 2

E

f f f f f

RS SI I
f f f f f

RS SI I
f f f f f

RS SI I
f f f f f

RS SI I
f f f f f

RS SI I

     
      
     
      
     

       
     
      
     
      

J

At the disease free equilibrium point,
0

1 2

,  0,  0,  ,  0
Q

u u

 
  
 

E and the Jacobian matrix becomes:
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 

 

 

0

1
1

1

1
1 1

1

1

2
2

2

2
2 2

2

0  0

 0  0      0

 0    0      0

0 0 0

0 0 0 0

Q

Q
m

E

m







 



  











 
 
 
 
    
 
   
 
 

 
 
 
  
  




J

(25)

Theorem 2:The disease free equilibrium is locally asymptotic stable if the eigenvalues of the Jacobian matrix has negative real
parts (Brauer et al.,2008).

The eigenvalues of the matrix (25) are

   
2

2 2 2 2
1 11 2 1

2

,  ,  ,  ,
m

m u
  

   


   
            

.

Since all the Eigen values of the Jacobian matrix above have negative real parts, then the disease free equilibrium of the model is
locally asymptotically stable.

Existence and Global (Local) Stability of Endemic Equilibrium Point: Endemic equilibrium point (EEP) is a steady state in
which the disease persists in the populations (Driessche and Watmough, 2008). That is

1 2,  0I I  , which is given by

 * * ** *
1 221 1, , ,  ,  0S I SE R I  . Then, by solving the model systems (4), we express each equilibrium point at a steady state to get

*
1,S 1

*,I *,R 2
*,S 2

*I as an endemic equilibrium where:

   
         

1012 2 1 1*
1 2 21 1 10 0 01 11 2 1 1 1 1 2 1 1 1

Q m R
S

m mR R R

    

            

   


          

  
        

01 2 1
1

0 01 11 2 1 1 1 2 2 1 1 1

1*
1 1

Q R
I

m mR R

  
             

 


         

 
           

01 2
2 2

0 01 11 2 1 1 1 2 1 2 1 1 1

1*
1 1

Q R
R

m mR R

 

               




          

02

2

*S R




 2
2 0

2

* 1I R


 

From the above equations of *
1S , *

1I , *R , *
2S and *

2I , we conclude that the endemic equilibrium point
1E is always non-negative

and well-defined if and only if
0 1R  . Therefore, we state the following lemma 3 as follows:

Lemma 3: The endemic equilibrium point 1E exists and is always positive if and only if 0 1 (Driessche and Watmough,

2002). Hence, the model system (4) will exhibit forward bifurcation.

3371 Edward A. Mfuse et al. Computational dynamics and optimal control of toxoplasmosis disease in human and cat populations



Figure 2: The Forward Bifurcation

From the figure above, it can be seen that, the forward bifurcation occurs at 0 1  , meaning that the disease is decreasing due to

interventions and if 0 1  , no endemic exists while If 0 1  , the endemic equilibrium exists in the population

Global stability of the Endemic Equilibrium point 1E

Theorem 3: If 0 1 , the endemic equilibrium of the model system (4) is globally asymptotically stable.

Proof:

Using the constructed Lyapunov function as suggested by Cai and Li (2010), the global stability of Endemic equilibrium can be
analysed by defining the Lyapunov function as

  11
1 1 11 1 1

11

* ** * * * * * * * *, , ,  ,  log log1 1 2 2
S IV S I R S I S S S I I I
S I

   
          

  

22
2 2 22 2 2

22

** ** * ** * *log log logSR IR R S S SR I I I
R S I

    
               
    

.

It can be shown that

dV
K R

dt
  (25)

Where

             
* * *

1 1 1 1** * *
2 2 1 11 11
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2 2 *

2 22
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*2 2I IS S
S S

S I
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  


,

 
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1 1 1 1
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2 2 11 11 11

S S I I
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       22 **
2 2

*2 2 21 2

R S SR
I IR S

 


   

     2 2* *
2 2 2 2

.2 2 2 22

S S I I
m

S I
 

 
  

Thus, if ,K R then 0
dV

dt
 . But 0

dV

dt
 if and only if *

1 1S S , *
1 1I I , *R R , *

2 2S S and *
2 2I I . Therefore, the largest

compact invariant set in  * ** * *
1 21 2, , , , : 0

dV
S SI R I

dt
    
 

is the singleton  1E , where 1E is the endemic equilibrium point of

the model systems (4). Therefore, by LaSalle’s invariant principle,
1E is globally asymptotically stable in  if .K R

Model with Control Variable

Introduction

In this section, the mathematical model system (4) is extended by incorporating two time- dependent controls
1u and

2u where

(i)
1u  Control measure due to vaccination and quarantine of infected humans,

(ii) 2u  Control measure due to vaccination and quarantine of infected cats.

Then the model becomes

 1
2 1 11 1 11

d S Q u RS SI
dt

     

   1
2 111 1 21 11

d I u m mSI I
dt

      

 1 1

dR
RI

dt
     (26)

 2
2 2 22 2 21

d S u S SI
dt

     

   2
2 22 22 2 21

d I u S mI I
dt

    

where the control functions are bounded i.e.
10 ( ) 1u t  and

20 ( ) 1u t  .

Optimal Control Problem: Here we aim at minimizing the Toxoplasmosis disease while optimizing  1u t (control measure due

to vaccination and quarantine of infected human) and  2u t (the control measure due to vaccination and quarantine of infected

cats). In order to minimize infection, it is required to minimize the objective function

         
0

2
2

1 2 3 1 4 21 2
1

1

2

f

i i i
i

t
J t t t t dtu S S c uB B B I B I

t 

       
 (27)
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subject to         1 2,  ,  ,x t g t x t u t u t  , with  0 0x t x and  fx t free variables. 1 2 4,  ,  ...,B B B are the balancing cost

factors, while 1 2
1

2
c

u is the cost of treatment and 2 2
2

2
c

u is the cost associated with education campaigns,
1c and

2c are weights which

depend on the relative importance of each of the control measures. It is then intended to find optimal controls *
1u and *

2u , such that

   * *
1 2 1 2, min ,J u u J u u , where 10 1u  and 20 1u  . The Pontryagin maximum principle will be used to suggest the

necessary optimal conditions, by forming Hamiltonian function

       
2 5

2
1 1 2 2 3 1 4 2

1 1

1

2 i i i i
i i

H B S t B S t B I t B I t c u g
 

       (28)

where     1 2, , ,ig x u t u t t are the equations on the right hand side of the Ordinary differential equation of Control problem and

i are co-state variables with 1, 2,3, 4,5i  .

Theorem 2: There exists a pair of optimal controls  * *
1 2,u u and optimal solution  * * * * *

1 2 1 2, , , ,S S I I R that minimizes  1 2,J u u

Furthermore there exist adjoint functions  i t for 1, 2,3, 4,5i  satisfying equation (28) for the Hamiltonian  H (Okosun and

Makinde, 2013b_3); such that

 1
1 2 31 1 21 1 1

1

(1 ) (1 )
d H

u u IB I B
dt S

   


      


   21 21 2 11 1 1(1 ) (1 )u I u I        ,

   2
3 2 31 11 1

1

d H
m mB

dt I

     


         


 3
1 1 3 1

d H
B

dt R
     


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
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2 3 22 2 22 2 2
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d H
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dt S
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
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

 2 2 24 54 2 2 22 2 2 2(1 ) (1 ) (1 )B u u uI I I           (29)

 5
1 21 1 2 21 2

2

(1 ) 1
d H

u S B u SB
dt I


 


     


    3 2 221 4 21 2 2(1 ) 1u B u mS SB       

11 1 1 1 2 1 1(1 ) (1 )u S u S      

  2 2 24 5 2 22 22
(1 ) (1 )u S mu S        

with the transversality conditions

 1 ft   2 ft   3 ft   4 ft   5 0ft  . (30)

The optimal controls *
1u and *

2u can be solved from the optimality conditions
1

0
H

u





and

2

0
H

u





as suggested by Lenhart and

Workman (2007). Thus

 2 1 31 1 2 1 11
1

,
H

S c uI B B
u

  

    



 2 2 42 4 5 2 22
2

.
H

S c uI B B
u

  

    


(31)

This gives
 2 3 11 1 21

1
1

,
SI B B

u
c

    

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 2 4 22 4 52
2

2

.
SI B B

u
c

    


(32)
Consequently

 2 3 11 1 21*
1

1

max 0,  min 1,
SI B B

u
c

          
   

and

 2 4 22 4 52*
2

2

max 0,  min 1,
SI B B

u
c

          
   

(33)

By standard control arguments as suggested by Makinde and Okusun (2013), we have

1
*
1 1 1

1

0             0

      0 1

1            1

if u

u u if u

if u


  
 

and

2
*
2 2 2

2

0            0

      0 1

1              1

if u

u u if u

if u


  
 

. (34)

Numerical Simulations of the Model with Control: In this section, we illustrate the analytical results of the study by
carrying out numerical simulations of the model with controls i.e. model system (26) using the set of estimated parameter
values given in the Table 1 below.

Table 1: Parameter Values Used for Model Simulation

Parameters Value per month Source

1 0.5 Estimated

2 0.1 Estimated

1 0.2 Estimated

2 0.275 Estimated

 0.19 Estimated

1m 0.3 Estimated

2m 0.41 Estimated

 1 Estimated
Q 25 Estimated

 0.98 Estimated

Initial values are estimated as  1 0 200S  ,  1 0 100I  ,  0 80R  ,  2 0 50S  , and  2 0 5I  . The weights 100i iA B  , for 1, 2,3, 4i 

and 5 are used, in order to show the effect of optimizing control measures in the control problem (26) when,

 Only a control measure due to quarantine of exposed and susceptible humans,
1u , is applied to the model equations,

 Only a control measure due to vaccination and quarantine of infected cats
2( )u is applied to the model equations,

 Both controls,
1u and

2u are applied to the model equations.

Figures 3 below show the behaviour of the control model when one control
1u (Control measure of humans due to

vaccination and quarantine of infected humans) is applied.
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Figures 3. Behaviour of the Control Model When Only One Control, 1u is Applied.

In figure 3A, it is seen that the susceptible individuals increase logistically with time when control 1u is applied. This is because,

as vaccination and quarantine are applied effectively to the susceptible individuals, large number of individuals increases
continuously. On the contrary, when the control is not applied, the susceptible individuals increase with the increase in time. In
figure 3B, it is seen that the application of control to the infected individuals results in reducing the number of infectious
individuals with time. On the contrary, in the absence of vaccination and quarantine, the infectious individuals increase
continuously since no supportive treatment is given to the group. In figure 3C, the numerical solution of recovered individuals
with control and with no control is shown.

From the figure, it is seen that the number recovered individuals without control increase continuously than with control during the
control period. On the contrary, the recovered individuals with control increase with time until the population develops immunity.
Figure 3D shows that susceptible vectors with control increase to the maximum during the control period. The reason is, as
vaccination is given to the susceptible vector, the number of susceptible individuals continues to increase with time. On the
contrary, when vaccination is not given to the susceptible vectors, the number of susceptible individuals decrease with time. Figure

3E shows show that, in the absence of control 1u , the number of infected individuals increases to the maximum while with control

1u , the number of infected individuals decreases to zero.

Figures 4 below shows the behaviour of the control model when only the control
2u (Control measure of vaccination and

quarantine of infected cats) is applied
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Figure 4. Behaviour of the Control Model When only the Control 2u is Applied

Figure 4A shows that when control
2u is applied, the number of susceptible individuals increase logistically with time. The same

case occurs to susceptible vectors in figure 5.7 D, where the graph increases logistically to the maximum when vaccination is
applied to susceptible vectors and decreases with time when no control is applied. Figure 4B shows that, if control measure of
vaccination and quarrantine is not applied, large number of infectious individuals increases logistically to the maximum. With the
application of control, the infected individuals decrease with time The same happens in figure 4E where the infectious population
increases logistically to the maximum when control is not applied to the group. On the contrary, when control measure is applied,
the number of infectious decreases logistically with time. Figure 4C shows the recovery individuals with control and with no
control. From the figure, it can be seen that the recovery class without control increases logistically with time. The reason is that
large number of individuals from the susceptible and infectious groups who are not vaccinated, enter into this group. On the
contrary, when we optimize the control

2u the recovery individuals decrease with time until the population gets immunity. Figure

4F shows the control profile when
2u (control measure of cat with vaccination and quarrantine of infected cat) is optimized. From

the graph, the results show that, when control is optimized, the graph increases to the maximum and decreases with time until it

drops to the final time where 1u equals to zero.

Figures 5 below show the simulation of the model when both controls are optimized  1 2,  0u u  .
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Figure 5. Simulation of the Model when both Control are Optimized  1 2,  0u u 

Figures 5A and 5D, show that, in the presence of control strategies, susceptible individuals and susceptible vectors with control
increase logistically with time, while if there is no control the related populations decrease with time. Figures 5B and 5E, show
that, in the absence of control strategies, the populations of both infected individuals and infected vectors increase logistically with
time. On the contrary, in the presence of control strategies, the infections decrease with time. Figure 5C shows the numerical
solution of recovery individuals with control and with no control. The results show that, if no control strategies are used, the
recovery class increases logistically with time, whereas the recovery class with control strategies increases with time until the
population developed immunity. Figure 5F shows that using both controls, could minimize the rate of infection on the populations,
where both controls are at the maximum and decrease to zero.

Conclusions

In this paper, a non-linear mathematical model for controlling toxoplasmosis infection to human and cat populations has been
formulated and analysed to investigate the dynamical behaviour of the disease. Qualitative analysis was performed to the basic
model. By applying stability theory of ordinary differential equations, the equilibrium points were found to be stable if the
reproduction number was less than unity. Two control measures: control measure of humans due to vaccination and quarantine of
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infected humans and control measure of cats due to vaccination and quarantine of infected cats were finally introduced to the
model. Model simulation of the model revealed that application of control strategies of vaccination and quarantine may succeed in
the elimination of toxoplasmosis infection in a society.
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