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ABSTRACT 
 

We introduce the leap hyper-Zagreb indices of a graph. In this paper, we compute the leap hyper-Zagreb indices and their polynomials of wheel, 
gear, helm, flower and sunflower graphs. 
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INTRODUCTION 
 

Let G be a simple connected graph with a vertex set V(G) and an edge set E(G). The degree of a vertex v is the number of edges 
incident to v and is denoted by d(v). The distance between two vertices u and v of a graph G is the number of edges in a shortest 
path connecting them and it is denoted by d(u, v). For a vertex v in G, the open neighborhood of v is defined as Nk(v/G) = {u  

V(G) : d(u, v) = k}, where k is a positive integer. The k-distance degree, denoted by dk(v), of a vertex v  V(G) is the number of k 
neighbors of v in G, see (1). We refer to (2) for undefined terminology and notation not given here. 
 

The second leap Zagreb index was introduce by Naji et al. in (1) and defined as 
 

     
 

2 2 2
uv E G

LM G d u d v


   

 

Recently, some new leap indices were introduced and studied such as sum connectivity leap and geometric-arthimetic leap indices 
(3), F-leap indices (4), augmented leap index (5) and minus leap and square leap indices (6). 
 

A new version of the first leap Zagreb index is defined as 
 

     
 

*
1 2 2 .

uv E G

LM G d u d v


     

 

We now define the first and second leap hyper-Zagreb indices as 
 

     
 

2

1 2 2
uv E G

HLM G d u d v


     

     
 

2

2 2 2 .
uv E G

HLM G d u d v


     

 

In (7), Shirdel et al. introduced the hyper-Zagreb index. In recent years, some new hyper-Zagreb type indices were introduced and 
studied such as hyper Revan indices (8), reverse hyper-Zegreb indices (9), multiplicative hyper-Zagreb indices (10), K hyper 
Banhatti indices (11). 
 

We introduce the general first and second leap Zagreb indices defined as 
 

     
 

1 2 2 .
aa

uv E G

LM G d u d v


                                                                                             …………………………………..(1) 

     
 

2 2 2 .
aa

uv E G

LM G d u d v


                                                                                             …………………………………..(2) 
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Considering the leap Zagreb indices, we propose the first and second leap Zagreb polynomials and the first and second leap hyper-
Zagreb polynomials of G, defined respectively as 
 

     

 

2 2*
1 ,

d u d v

uv E G

LM G x x
  



                                                                                                         …………………………..(3) 

 

     

 

2 2

2 , d u d v

uv E G

LM G x x


                                                                                                            …………………………..(4) 

     

 

2

2 2

1 ,
d u d v

uv E G

HLM G x x
  



                                                                                                     ……………………………(5) 

     

 

2

2 2

2 , .
d u d v

uv E G

HLM G x x
  



                                                                                                      ……………………………(6) 

 

We consider wheel graphs and wheel type graphs, see (12). In this paper, the leap hyper-Zagreb indices and their polynomials, and 
general first and second leap Zagreb indices of wheels, gear graphs, helm graphs flower graphs, sunflower graphs are determined. 
 

2. Wheels Wn+1 
 

The wheel Wn+1 is defined to be the join of cycle Cn and complete graph K1. Let G = Wn+1. The graph G has n+1 vertices and 2n 
edges. The vertex of K1 is called apex and the vertices of Cn are called rim vertices. 

 
 

Figure 1. Graph Wn+1 
 

There are two types of the 2-distance degree of edges in Wn+1 as given in Table 1. 
 

Table 1. 
 

d2(u), d2(v)\ uv ∈ E(G) (0, n – 3) (n – 3, n – 3) 

Number of edges n n 

 
Theorem 1. Let G=Wn+1 be a wheel with n+1 vertices and 2n edges, n ≥ 3. Then 
 

a)      
1 1 2 3 .

aa aLM G n n                                                                                                               ……………………….(7) 

 

b)    2

2 3 .
aaLM G n n                                                                                                                        ……………………….(8) 

 

Proof: (a) By using equation (1) and Table 1, we have 
 

     
 

1 2 2

aa

uv E G

LM G d u d v


      

 

( ) ( )0 3 3 3= + - + - + -
a a

n n n n n ( ) ( )1 2 3 .
aa n n= + -  

 

(b)  By using equation (2) and Table 1, we have 
 

     
 

2 2 2

aa

uv E G

LM G d u d v


     

( ) ( )( )[ ]0 3 3 3
aa

n n n n n= ´ - + - - ( )2
3 .= -

a
n n  

 

Corollary 1.1. Let Wn+1 be a wheel, n ≥ 3. Then 
 

(a) ( ) ( )*
1 1 3 3 .+ = -nLM W n n  
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(b) ( ) ( )2

1 1 5 3 .+ = -nHLM W n n  
 

Proof: Put a = 1, 2 in equation (7), we obtain the above results. 
 

Corollary 1.2. Let Wn+1 be a wheel, n 3. Then 
 

(a) ( ) ( )2

2 1 3 ,+ = -nLM W n n  see (12). 

(b) ( ) ( )4

2 1 3 .+ = -nHLM W n n  
 

Proof: Put a = 1, 2 in equation (8), we get the above results. 
 
Theorem 2. Let G=Wn+1 be a wheel, n  3. Then 
 

a) ( )
( )* 3 2 3

1 1, .- -
+ = +n n

nLM W x nx nx   

b) ( )
( )2

0 3
2 1 , -

+ = + n
nLM W x nx nx  

c) ( )
( ) ( )2 2

3 4 3
1 1, .- -

+ = +n n
nHLM W x nx nx  

d) ( )
( )4

0 3
2 1 , .n

nHLM W x nx nx -
+ = +  

 

Proof: (a) From equation (3) and Table 1, we have 
 

     

 

2 2* 0 3 3 3
1 1, d u d v n n n

n
uv E G

LM W x x nx nx     




  
( )3 2 3- -= +n nnx nx  

 

(b) From equation (4) and Table 1, we get 
 

     

 

    
2 2 0 3 3 3

2 1, d u d v n n n
n

uv E G

LM W x x nx nx  




  
( )2

0 3 .-= + nnx nx  

 

(c) From equation (5) and Table 1, we obtain 
 

     

 

   
2 2 2

2 2 0 3 3 3
1 1, d u d v n n n

n
uv E G

HLM W x x nx nx        




  
( ) ( )2 2

3 4 3 .- -= +n nnx nx  

(d) By using equation (6) and Table 1, we establish 
 

     

 

      
2 2 2

2 2 0 3 3 3
2 1, d u d v n n n

n
uv E G

HLM W x x nx nx      




  
( )4

0 3 .-= + nnx nx  

 

3. Gear Graphs Gn 
 

The gear graph Gn is a graph obtained from wheel Wn+1 by adding a vertex between each pair of adjacent rim vertices. Clearly Gn 
has 2n+1 vertices and 3n edges. 

 
 

Figure 2. Graph Gn 
 

In Gn, there are two types of the 2-distance degree of edges as given in Table 2. 
 

Table 2. 
 

d2(u), d2(v)\ uv  E(Gn) (n, n – 1) (3, n – 1) 

Number of edges n 2n 

 
Theorem 3. Let Gn be a gear graph with 3n edges. Then 

2785                      International Journal of Current Research in Life Sciences, Vol. 07, No. 10, pp.2783-2791, October, 2018                                                                      

 



a)      
1 2 1 2 2 .

a aa
nLM G n n n n                                                                                        …………………………………..(9) 

 

b)        
2 1 2 3 1 .

a aa
nLM G n n n n n                                                                               ………………………………….(10) 

 
Proof: (a) By using equation (1) and Table 2, we obtain 
 

     
 

1 2 2

n

aa
n

uv E G

LM G d u d v


      

( ) ( )1 2 3 1= + - + + -
a a

n n n n n  

( ) ( )2 1 2 2 .= - + +
a a

n n n n  

 
(b)  By using equation (2) and Table 2, we obtain 
 

     
 

2 2 2

n

aa
n

uv E G

LM G d u d v


     

( )[ ] ( )[ ]1 2 3 1 .= - + -
a a

n n n n n  
 

Corollary 3.1. Let Gn be a gear graph with 3n edges. Then 
 

(a) ( )* 2
1 4 3 .nLM G n n= +  

(b) ( ) 2 2
1 6 4 9 .nHLM G n n n= + +  

 

Proof: Put a = 1, 2 in equation (9), we get the above desired results. 
 

Corollary 3.2. Let Gn be a gear graph with 3n edges. Then 
 

(a) ( ) 3 2
2 5 6 ,nLM G n n n= + -  see (12). 

(b) ( ) 5 4 3 2
2 2 19 36 18 .nHLM G n n n n n= - + - +  

 

Proof: Put a = 1, 2 in equation (10), we get the above desired results. 
 
Theorem 4. Let Gn be a gear graph with 3n edges. Then 
 

a) ( )* 2 1 2
1 , 2 .n n

nLM G x nx nx- += +  

b) ( ) ( ) ( )1 3 1
2 , 2 .n n n

nLM G x nx nx- -= +  

c) ( ) ( ) ( )2 2
2 1 2

1 , 2 .n n
nHLM G x nx nx- += +  

d) ( ) ( ) ( )2 22 1 9 1
2 , 2 .n n n

nHLM G x nx nx- -= +  

 

Proof: (a) From equation (3) and Table 2, we derive 
 

 
   

 

2 2* 1 3 1
1 , 2

n

d u d v n n n
n

uv E G

LM G x x nx nx
       



   2 1 22 .n nnx nx- += +  

(b) From equation (4) and Table 2, we establish 
 

     

 

   
2 2 1 3 1

2 , 2 .
n

d u d v n n n
n

uv E G

LM G x x nx n 



    

 (c) From equation (5) and Table 2, we obtain 
 

     

 

   
2 2 2

2 2 1 3 1
1 , 2

n

d u d v n n n
n

uv E G

HLM G x x nx nx       



  
( ) ( )2 2
2 1 22 .n nnx nx- += +  

(d) By using equation (6) and Table 2, we have 
 

     

 

     
2 2 2

2 2 1 3 1
2 , 2

n

d u d v n n n
n

uv E G

HLM G x x nx nx    



  
( ) ( )2 22 1 9 12 .n n nnx nx- -= +  

 

4. Helm Graphs Hn 
 

A helm graph Hn is a graph which is obtained from Wn+1 by attaching a pendant edge to each rim vertex. Clearly Hn has 2n+1 
vertices and 3n edges. 
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Figure 3. Graph Hn 
 
In Hn, there are three types of the 2-distance degree of edges as given in Table 3. 
 

Table 3.  
 

d2(u), d2(v)\ uv  E(Hn) (n, n – 1) (3, n – 1) (n – 1, n – 1) 

Number of edges n n n 

 
Theorem 5. Let Hn be a helm graph with 3n edges. Then 
 

a)        
1 2 1 2 2 2 .

a a aa
nLM H n n n n n n                                                                           ……………………………….(11) 

 

b)          2

2 1 3 1 1 .
a a aa

nLM H n n n n n n n                                                                   ………………………………..(12) 
 

Proof: (a) By using equation (1) and Table 3, we deduce 
 

     
 

1 2 2

n

aa
n

uv E H

LM H d u d v


      

 

( ) ( ) ( )1 3 1 1 1
a a a

n n n n n n n n= + - + + - + - + -  
 

( ) ( ) ( )2 1 2 2 2 .
a a a

n n n n n n= - + + + -  
 

(b)  By using equation (2) and Table 3, we deduce 
 

     
 

2 2 2

n

aa
n

uv E H

LM H d u d v


     

( )[ ] ( )[ ] ( )( )[ ]1 3 1 1 1
a a a

n n n n n n n n= - + - + - -  
 

( )[ ] ( )[ ] ( )2
1 3 1 1 .

a a a
n n n n n n n= - + - + -  

 
Corollary 5.1. Let Hn be a helm graph with 3n edges. Then 
 

(a) ( )* 2
1 5 .nLM H n n= -  

 (b) ( ) 3 2
1 9 8 9 .nHLM H n n n= - +  

 

Proof: Put a = 1, 2 in equation (11), we get the above desired results. 
 

Corollary 5.2. Let Hn be a helm graph with, 3n edges. Then 
 

 (a) ( ) 3
2 2 2 ,nLM H n n= -  see (12). 

 (b) ( ) ( ) ( )2 3 2
2 1 2 2 10 .nHLM H n n n n= - - +  

 

Proof: Put a = 1, 2 in equation (12), we obtain the above desired results. 
 

Theorem 6. Let Hn be a helm graph with 3n edges. Then 
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a) ( )* 2 1 2 2 2
1 , .n n n

nLM H x nx nx nx- + -= + +  

b) ( ) ( ) ( ) ( )2
1 3 1 1

2 , .n n n n
nLM H x nx nx nx- - -= + +  

c) ( ) ( ) ( ) ( )2 2 2
2 1 2 2 2

1 , .n n n
nHLM H x nx nx nx- + -= + +  

d) ( ) ( )[ ] ( )[ ] ( )[ ]2 2 4
1 3 1 1

2 , .n n n n
nHLM H x nx nx nx- - -= + +  

 

Proof: (a) From equation (3) and Table 3, we derive 
 

     

 

2 2* 1 3 1 1 1
1 ,

n

d u d v n n n n n
n

uv E H

LM H x x nx nx nx       



     

 

2 1 2 2 2.n n nnx nx nx- + -= + +  
 
(b) From equation (4) and Table 3, we deduce 
 

     

 

      
2 2 1 3 1 1 1

2 ,
n

d u d v n n n n n
n

uv E H

LM H x x nx nx nx   



     

     
     21 3 1 1 .n n n nnx nx nx      

 

(c) From equation (5) and Table 3, we obtain 
 

     

 

          
2 2 2 2

2 2 1 3 1 1 1
1 ,

n

d u d v n n n n n
n

uv E H

HLM H x x nx nx nx          



    

         
( ) ( ) ( )2 2 2
2 1 2 2 2 .n n nnx nx nx- + -= + +  

 

(d) By using equation (6) and Table 3, we have 
 

     

 

         
2 2 2 2

2 2 1 3 1 1 1
2 ,

n

d u d v n n n n n
n

uv E H

HLM H x x nx nx nx      



     

         
( )[ ] ( )[ ] ( )( )[ ]2 2 2

1 3 1 1 1 .n n n n nnx nx nx- - - -= + +  
 

5. Flower Graphs Fln 
 

A graph Fln is a flower graph which is obtained from a helm graph by joining each pendant vertex to the apex of the helm graph. 
Clearly Fln has 2n+1 vertices and 4n edges. 

 
 

Figure 4. Graph Fln 
 

In Fln, there are 4 types of the 2-distance degree of edges as given in Table 4. 
 

Table 4.  
 

d2(u), d2(v)\ uv  E(Fln) (0, n – 5) (0, n – 2) (n – 5, n – 2) (n – 5, n – 5) 

Number of edges n n n n 

 
Theorem 7. Let G = Fln be a flower graph with 2n +1 vertices and 4n edges. Then 
 
 

a)          
1 3 5 2 2 7 2 10 .

a a a aa
nLM Fl n n n n n n n n                                                                …………………………..(13) 
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b)        2

2 5 2 5 .
a aa

nLM Fl n n n n n                                                                                      ……………………………(14) 

 
Proof: (a) By using equation (1) and Table 4, we have 
 

     
 

1 2 2

aa
n

uv E G

LM Fl d u d v


      

    ( ) ( ) ( ) ( )0 5 0 2 5 2 5 5
a a a a

n n n n n n n n n n= + - + + - + - + - + - + -  

    ( ) ( ) ( ) ( )3 5 2 2 7 2 10 .
a a a a

n n n n n n n n= - + - + - + -  
 

(b)  By using equation (2) and Table 4, we obtain 
 

     
 

2 2 2

aa
n

uv E G

LM Fl d u d v


     

    ( )[ ] ( )[ ] ( )( )[ ] ( )( )[ ]0 5 0 2 5 2 5 5
a a a a

n n n n n n n n n n= ´ - + ´ - + - - + - -  

    ( )( )[ ] ( )2
5 2 5 .

a a
n n n n n= - - + -  

 

Corollary 7.1. Let Fln be a flower graph with 4n edges. Then 
 

 (a) ( )* 2
1 8 34 .nLM Fl n n= -  

 (b) ( ) 3 2
1 8 62 128 .nLM Fl n n n= - +  

 

Proof: Put a = 1, 2 in equation (13), we obtain the above desired results. 
 
Corollary 7.2. Let Fln be a flower graph with 4n edges. Then 
 

 (a) ( ) 3 2
2 2 17 35 ,nLM Fl n n n= - +   see (12). 

 (b) ( ) 5 4 3 2
2 2 34 219 415 725 .nHLM Fl n n n n n= - + - +  

 

Proof: Put a = 1, 2 in equation (14), we get the above desired results. 
 

Theorem 8. Let G=Fln be a flower graph with 4n edges. Then 
 

 a) ( )* 5 2 2 7 2 10
1 , .n n n n

nLM Fl x nx nx nx nx- - - -= + + +  

 b) ( ) ( )( ) ( )2
0 5 2 5

2 , 2 .n n n
nLM Fl x nx nx nx- - -= + +  

 c) ( ) ( ) ( ) ( ) ( )2 2 2 2
5 2 2 7 2 10

1 , .n n n n
nHLM Fl x nx nx nx nx- - - -= + + +  

 d) ( ) ( )( )[ ] ( )[ ]2 4
0 5 2 5

2 , 2 .n n n
nHLM Fl x nx nx nx- - -= + +  

 
Proof: (a) From equation (3) and Table 4, we obtain 
 

 
   

 

2 2* 0 5 0 2 5 2 5 5
1 ,

d u d v n n n n n n
n

uv E G

LM Fl x x nx nx nx nx
             



      

     5 2 2 7 2 10.n n n nnx nx nx nx- - - -= + + +  
 

(b) From equation (4) and Table 4, we have 
 

     

 

         
2 2 0 5 0 2 5 2 5 5

2 , d u d v n n n n n n
n

uv E G

LM Fl x x nx nx nx nx     



      

      
    20 5 2 52 .n n nnx nx nx      

 

 (c) From equation (5) and Table 4, we deduce 
 

     

 

       
2 2 2 2 2

2 2 5 2 2 7 2 10
1 , d u d v n n n n

n
uv E G

HLM Fl x x nx nx nx nx       



      

 

 (d) By using equation (6) and Table 4, we derive 
 

     

 

     
2 2 4

2 2 0 5 2 5
2 , 2 .d u d v n n n

n
uv E G

HLM Fl x x nx nx nx     



     

 

6. Sunflower Graphs Sfn 
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A graph Sfn is a sunflower graph which is obtained from the flower graph Fln by attaching n pendant edges to the apex vertex. 
Clearly Sfn has 3n+1 vertices and 5n edges. 
 

 
 

Figure 5. Graph Sfn 
 
In Sfn, there are 5 types of the 2-distance degree of edges as given in Table 5. 
 

Table 5.  
 

d2(u), d2(v)\ uv  E(Sfn) (0, 3n – 4) (0, 3n – 2) (0, 3n – 1) (3n – 4, 3n – 4) (3n – 4, 3n – 2) 

Number of edges n n n n n 

 
Theorem 9. Let G = Sfn be a sunflower graph with 3n +1 vertices and 5n edges. Then 
 

a)            
1 3 4 3 2 3 1 6 8 6 6 .

a a a a aaLM G n n n n n n n n n n                                                     ……...............……..(15) 

 

b)        2

2 3 4 3 4 3 2 .
aaaLM G n n n n n                                                                                       ………………………….(16) 

 

Proof: (a) By using equation (1) and Table 5, we deduce 
 

     
 

1 2 2

aa

uv E G

LM G d u d v


      

  ( ) ( ) ( ) ( ) ( )0 3 4 0 3 2 0 3 1 3 4 3 4 3 4 3 2
a a a a a

n n n n n n n n n n n n= + - + + - + + - + - + - + - + -  

  ( ) ( ) ( ) ( ) ( )3 4 3 2 3 1 6 8 6 6 .
a a a a a

n n n n n n n n n n= - + - + - + - + -  
 
(b)  By using equation (2) and Table 5, we obtain 
 

     
 

2 2 2

aa

uv E G

LM G d u d v


     

  ( )[ ] ( )[ ] ( )[ ] ( )( )[ ] ( )( )[ ]0 3 4 0 3 2 0 3 1 3 4 3 4 3 4 3 2
a a a a a

n n n n n n n n n n n n= ´ - + ´ - + ´ - + - - + - -  

  ( ) ( )( )[ ]2
3 4 3 4 3 2 .

aa
n n n n n= - + - -  

 

Corollary 9.1. Let Sfn be a sunflower graph with 5n edges. Then 
 

(a) ( )* 2
1 21 21 .nLM Sf n n= -  

(b) ( ) 3 2
1 99 210 121 .nHLM Sf n n n= - +  

 

Proof: Put a = 1, 2 in equation (15), we get the above desired results. 
 

Corollary 9.2. Let Sfn be a sunflower graph with 5n edges. Then 
 

(a) ( ) 3 2
2 18 42 24 ,nLM Sf n n n= - +  see (12). 

(b) ( ) ( ) ( )2 2
2 3 4 18 36 20 .nHLM Sf n n n n= - - +  

 

Proof: Put a = 1, 2 in equation (16), we obtain the above desired results. 
 
Theorem 10. Let G=Sfn be a sunflower graph with 5n edges. Then 

2790                      International Journal of Current Research in Life Sciences, Vol. 07, No. 10, pp.2783-2791, October, 2018                                                                      

 



a) ( )* 3 4 3 2 3 1 6 8 6 6
1 , .n n n n n

nLM Sf x nx nx nx nx nx- - - - -= + + + +  

b) ( ) ( ) ( )( )2
0 3 4 3 4 3 2

2 , 3 .n n n
nLM Sf x nx nx nx- - -= + +  

c) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2
3 4 3 2 3 1 6 8 6 6

1 , .n n n n n
nHLM Sf x nx nx nx nx nx- - - - -= + + + +  

d) ( ) ( ) ( )( )[ ]24
0 3 4 3 4 3 2

2 , 3 .n n n
nHLM Sf x nx nx nx- - -= + +  

 
Proof: (a) From equation (3) and Table 5, we have 
 

     

 

2 2* 0 3 4 0 3 2 0 3 1 3 4 3 4 3 4 3 2
1 ,

d u d v n n n n n n n
n

uv E G

LM Sf x x nx nx nx nx nx
               



       

       3 4 3 2 3 1 6 8 6 6.n n n n nnx nx nx nx nx- - - - -= + + + +  
 
(b) By using equation (4) and Table 5, we derive 
 

     

 

           
2 2 0 3 4 0 3 2 0 3 1 3 4 3 4 3 4 3 2

2 , d u d v n n n n n n n
n

uv E G

LM Sf x x nx nx nx nx nx      



       

      
    2

0 3 4 3 4 3 23 .n n nnx nx nx      
 
(c) From equation (5) and Table 5, we obtain 
 

     

 

         
2 2 2 2 2 2

2 2 3 4 3 2 3 1 6 8 6 6
1 , .d u d v n n n n n

n
uv E G

HLM Sf x x nx nx nx nx nx        



       

 

(d) By using equation (6) and Table 6, we deduce 
 

     

 

     
2 24

2 2 0 3 4 3 4 3 2
2 , 3 .d u d v n n n

n
uv E G

HLM Sf x x nx nx nx     



     
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