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ABSTRACT 
 

Traditionally Optimization of Multiple Genetic Sequence Alignment is based on statistics algorithms, which leads to loss of 
genetic characteristics and generate less feasible results. Sequence Alignment of genetic sequences need qualitative 
characteristics configuration at each level of MSA iteration, especially where characteristics inheritance based on specially 
genomes properties. Multiple Sequence Alignment optimization is one of the prominent areas in Bioinformatics where 
optimization problems occur due to mutation, uncertainty of large genetic data sets. Data Science and Mathematical Optimization 
Algorithm provides the combine solution for optimization problems related to genetic alignment. This research paper proposed a 
noval Hybrid Meta-Heuristic Optimization Genetic Alignment Algorithm (HMHOGA) to solve genetic alignment optimization 
problem at each phase of MSA iteration and also help to recognize occurrence of meta-heuristic characteristics. Proposed 
algorithm provides optimize alignment along with various evaluation factors like pair_sum(q), total_col_score(tc), 
standard_deviation_of_pair_matrix(z), reliability(r) and efficiency(e) based on CPU execution time. These evaluation factors act 
like as meta-heuristic knowledge base to optimize future alignments. 
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INTRODUCTION 
 
Intricate evolution of genetic species existence comes due to 
trillion years of mutation. This genetic mutation has been 
continuously generated large amount of labyrinthine data sets, 
which need to be optimized in field of bioinformatics. Genetic 
information and its mutation generate knowledge gap, which 
need to be fill with intelligent scientific approaches. Major 
challenge of native era is to evolve optimal machine learning 
and data science algorithms to solve these problems.In living 
beings Chromosome to Protein generation is complex mutant 
structure at each level, these types of mutations generate 
various infected cells, which leads towards critical diseases, so 
to trackthese types of mutation, we need to generate algorithms 
with the help of data science, which helps to track diseases 
mutation and to find its remedies for living beings.Alvaro et 
al., (2015), proposed the algorithm which uses the 
Evolutionary Computation and Multi objective Optimization 
for solving this bioinformatics problem. They represented a 
multi objective version of a memetic metaheuristic called 
Hybrid Multi objective Metaheuristics.  
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The results obtained by their method are compared with well-
known methods. At the end they concluded that their new 
approach presents remarkable accuracy when it deals with the 
sequences which have a low sequence similarity. The study 
presented by Alvaro Rubio-Largo proposed a characteristic-
based framework for improving the accuracy of MSA by 
characteristics of the input set of unaligned sequences, which 
need to extend search space for efficient optimize results with 
the help of meta-heuristic approach. Alvaro et al., (2016), 
proposed a characteristic based framework for multiple 
sequence aligners. In this they used input set of unaligned 
sequences than extract its characteristics aligner According to 
the best parameter configuration they run the aligner. At the 
end they show that their proposed work is better than default 
muscle by compare this framework with using different. 
benchmarks. The results show that the alignment of higher 
accuracy is achieved by using proposed framework. Alvaro 
Rubio-Largo also proposed a memetic algorithm for sequence 
alignment, which works better in local search space and need 
requirement to extend the search space. Anderson et al., 
(2016), developed a parallel version of the MSA-GA tool 
which is based on genetic Algorithms approach using 
multithread programming, their results shown that the 
modification version is 11% faster than the standard MSA-GA, 
using WSP function. Their results shown that their proposed 
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work good results produced good results and improved 
execution time. Dengfeng et al., (2015), 
sequence. For compare each sequence in the consensus 
sequence they used simulated annealing and star alignment. In 
this they present a multiple sequence alignment method based 
on the determined consensus sequence. Their Experimental 
results showed high accuracy of the algorithm.
al., (2016), proposed algorithm called MOMSA in which they 
used a new population initialization method and a novel 
mutation operator. They compared the performance of 
MOMSA with several alignment techniques including IMSA, 
MSAprobs, Probalign, MAFFT, Clustal omega, T
Kalign2, MUSCLE, CLUSTALW. For testing they had used 
benchmark datasets BAliBASE 2.0 and BAliBASE 3.0. Their 
results shown that their proposed algorithm called MOMSA 
obtained better alignments than VDGA, GAPAM on the most 
of test cases VDGA, GAPAM on the most of test cases, and in 
in terms of TC scores it gave better alignments than IMSA
Alam Manaar et al. (2016) have found a parallel search 
technique that can quickly and efficiently solve several 
optimization problems by using very less tuneable parameters 
for solving fast and efficient as compared to similar stochastic 
algorithms. This approach uses rotating and complement 
operator to reach distinct nodes, instead of traversing 
nodes in the search space and flip operator use to capture 
variations within the search space as well.In bioinformatics, 
Multiple sequence alignment is complex
problem that involves the alignment of three or more 
sequences. Multiple Sequence Alignment is generally used to 
match biological facts about genomes and 
typical used to check mutations. MSA also used to create a 
phylogenetic tree. Above mentioned reports and comparison 
with traditional approaches shows that our proposed hybrid 
meta-heuristic algorithm is generate better results
approach to overcome these problems. 
 

MATERIALS AND METHODS 
 
Involvement of different characteristics sequences in Multiple 
Sequence Alignment generates Knowledge Gap based on 
various factors and properties. To fill this knowledge gap, 
biological characteristics matching of genetic sequences is best 
approach. Characteristics based MUSCLE algorithm is fit for 
this approach due to flexible configuration based on genetic 
characteristics. To inherit best configuration, first of all need to 
compare input sequences with references data set like 
BaliBASE v3.0, because its tested and verify 
various scientific communities. At initial level BaliBASE v3.0 
work as base and after execution of proposed algorithm native 
heuristic knowledge base inherit with reference dataset. To 
find optimal configuration our proposed system uses power o
hybrid meta-heuristic machine learning, which learn from 
experience and increase knowledge base with every execution.
 
Theoretical Framework (Hybrid Meta
Approach): Multiple Sequence Alignment based on mutation 
characteristics generated optimization issues, which is a very 
complex NP-Hard Problem and needs to be solved by 
scientific approach. Traditionally these problems solved by 
statistical algorithms, but due to involvement of various 
characteristics in genetic sequences need to more s
terms of biological characteristics of genetic sequences and 
proposed a suitable solution in form of native genetic optimize 
aligner based on Hybrid Meta-Heuristic Approach. The 
existing framework has been designed for the characteristics
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this approach due to flexible configuration based on genetic 
characteristics. To inherit best configuration, first of all need to 
compare input sequences with references data set like 
BaliBASE v3.0, because its tested and verify manually by 
various scientific communities. At initial level BaliBASE v3.0 
work as base and after execution of proposed algorithm native 
heuristic knowledge base inherit with reference dataset. To 
find optimal configuration our proposed system uses power of 

heuristic machine learning, which learn from 
experience and increase knowledge base with every execution. 

Theoretical Framework (Hybrid Meta-Heuristic 
Multiple Sequence Alignment based on mutation 
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statistical algorithms, but due to involvement of various 
characteristics in genetic sequences need to more specific in 
terms of biological characteristics of genetic sequences and 
proposed a suitable solution in form of native genetic optimize 
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existing framework has been designed for the characteristics-

based sequence alignment, especially for amino acid chain 
sequences. This framework helps to track mutation of similar 
characteristics proteins. This approach also helpful to predict 
and track various diseases cells in different gene structure and 
it’s causes, which helps to develop remedies for living beings. 
This framework is very suitable for local search space, 
especially in the case of translation from mRNA to protein 
sequences and also useful for nucleic acid alignments.
 

 

Figure 1. Block Diagram of Propo
Algorithm

 
Proposed Heuristic & Meta-Heuristic Functions
 
a) q* [Pair-Wise Alignment Score]
 
Pair-wise Alignment Score for quality measurement reference 
from Alvaro Rubio-Largo [3]. 
 

�∗(�) ← ∑
��

���

�
���                                                                      

 
b) tc* [Total Column Score] 
 
Total Column Score for quality measurement reference from 
Alvaro Rubio-Largo [3]. 
 

                                                                  
 

c) z* [Standard Deviation of Similarity Matrix]
 
Stand Deviation of Similarity Matrix for quality measurement 
reference from Align Stat [14]. 

 
�∗(�) ← 	��������_���������
(3) 
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Block Diagram of Proposed Meta-Heuristic MUSCLE 
Algorithm 

Heuristic Functions 

Wise Alignment Score] 

wise Alignment Score for quality measurement reference 
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Total Column Score for quality measurement reference from 
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z* [Standard Deviation of Similarity Matrix] 

Stand Deviation of Similarity Matrix for quality measurement 
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d) e* [Efficiency based on CPU Execution Time]
 

Efficiency value e* based on CPU execution Time of MSA 
algorithms [2]. 
 
e) r* [Reliability based on level of Similarity]
 

Reliability of MSA algorithm shows level of Similarity for 

quality measurement reference from Align Stat [14]. Here 
dissimilarity score. 
 

�∗(�) ← 	� − 	�                                                                    
 

Proposed Hybrid Meta-Heuristic Optimization
 
Algorithm:Proposed Hybrid Meta-Heuristic Optimization 
Algorithm to find optimal characteristics of MUSCLE for best 
optimal multiple sequence alignment. 
Input: An Input Set of unaligned Sequences X and 

v3.0 0 References DataSet B. 
Output: Optimal MUSCLE Aligned Sequences X* and 
evaluation factors q*, tc*, e*, z* and r*. 
 
Step 1: Start. 
Step 2:Feature extraction of unaligned input sequences X using 

characteristics based fwkMUSCLE Algorithm 

Figure 2. Purposed Hybrid Meta
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e* [Efficiency based on CPU Execution Time] 

Efficiency value e* based on CPU execution Time of MSA 

Similarity] 

Reliability of MSA algorithm shows level of Similarity for 

quality measurement reference from Align Stat [14]. Here α is 

                                                                    (4) 

Optimization Algorithm 

Heuristic Optimization 
Algorithm to find optimal characteristics of MUSCLE for best 

An Input Set of unaligned Sequences X and BaliBase 

Optimal MUSCLE Aligned Sequences X* and 

Feature extraction of unaligned input sequences X using 

characteristics based fwkMUSCLE Algorithm 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 3: Call proposed Hybrid Meta

Process) to generate optimal characteristics C* 
hybridMetaHeuristicMUSCLE MSA along with 
evaluation factors q*, tc*, e*, z* and r*.

Step 4:Apply ClustalW, ClustalOmega and Default MUSCLE 
on input sequences and generate evaluation factors q*, 
tc*, e*, z* and r* for all applied MSA algorithms.

Step 5: Compare proposed algorithm with ClustalW, 
ClustalOmega and Default MUSCLE based on 
evaluation factors q*, tc*, e*, z* and r*.

Step 6: Stop. 
 
Proposed Hybrid Meta-Heuristic 
(Heuristic Sub Process) 
 
Algorithm: Proposed Hybrid Meta
Algorithm Heuristic Sub Process to find optimal characteristics 
of MUSCLE for best optimal multiple sequence alignment.
Input: An Input Set of unaligned Sequences X, unaligned 
sequences characteristics X(seqCharacteristics) and BaliBase 

v3.0 0 References Data Set wit
Base B*. 
Output: Optimal MUSCLE Aligned Sequences X* and 
evaluation factors q*, tc*, e*, z* and r*.
 

 

Purposed Hybrid Meta-Heuristic Algorithm (Heuristic Sub Process)
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tc*, e*, z* and r* for all applied MSA algorithms. 

Compare proposed algorithm with ClustalW, 
ClustalOmega and Default MUSCLE based on 
evaluation factors q*, tc*, e*, z* and r*. 

Heuristic Optimization Algorithm 

Algorithm: Proposed Hybrid Meta-Heuristic Optimization 
Algorithm Heuristic Sub Process to find optimal characteristics 
of MUSCLE for best optimal multiple sequence alignment. 

An Input Set of unaligned Sequences X, unaligned 
sequences characteristics X(seqCharacteristics) and BaliBase 

References Data Set with Meta-Heuristic Knowledge 

Optimal MUSCLE Aligned Sequences X* and 
evaluation factors q*, tc*, e*, z* and r*. 

 

Heuristic Algorithm (Heuristic Sub Process) 
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Figure 3: Purposed Hybrid Meta

Figure 4. Unaligned Sequences of BaliB

 

Figure 5. Proposed Hybrid Meta
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Figure 3: Purposed Hybrid Meta-Heuristic Algorithm (Meta-Heuristic Sub Process)

 

 

Unaligned Sequences of BaliBASE Benchmark BB11001 

 

Proposed Hybrid Meta-Heuristic MUSCLE MSA FASTA Output
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Table 1. Evaluation Factors For ClustalW and Proposed Hybrid Meta-Heuristic MUSCLE 
 

# Evaluation Factor Optimal Score(Probability) Optimal Score(%) 

1 
�∗(�) ←�

��

���

�

���

 
0.8744 87.44% 

2 

 

0.6875 68.75% 

3 �∗(�) = 	��(�������) 0.0895 8.95% 
4 e*(cpu_time) [seconds] 4.8225 - 
5 �∗(�) ← 	1 − 	� 0.8646 86.46% 

 
Table 2. Evaluation Factors For ClustalOmega & Proposed Hybrid Meta-Heuristic MUSCLE 

 

# Evaluation Factor Optimal Score(Probability) Optimal Score(%) 

1 
�∗(�) ←�

��

���

�

���

 
0.8312 83.12% 

2 

 

0.5625 56.25% 

3 �∗(�) = 	��(�������) 0.0879 8.79% 
4 e*(cpu_time) [seconds] 6.6604 - 
5 �∗(�) ← 	1 − 	� 0.8845 88.45% 

 

 
 

Figure 6. Proposed Hybrid Meta-Heuristic MUSCLE MSA Pretty Print Output 

 

 
 

Figure 7. ClustalW & Proposed Hybrid Meta-Heuristic Figure 8. ClustalW & Proposed Hybrid Meta-Heuristic 

 

 
 

Figure 9. ClustalW MSA FASTA Output 
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Step 1: Start. 
Step 2: Calculate distance between X(seqCharacteristics) from 

all B*(characteristics) and merge computed distance set 
with B*. 

Step 3: Calculate characteristics distance threshold value of 
reference data set B*. 

 
 
Step 4: Calculate Q & TC threshold value qtThreshold of 

Heuristic knowledge data set B*. 
 

 
 
Step 5: If qtThreshold > 0 than move to step 9 else continue 

with step 6. 
Step 6: Generate qtSubSet from B* where [B*(q) * 0.5 + 

B*(tc) * 0.5] >= qtThreshold. 
Step 7: Generate cSubSet from qtSubSet where qtSubSet(dist) 

<= cThreshold. 
Step 8: If length(cSubSet) > 0 than move to step 10 else call 

Meta-Heuristic Sub Process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 9: Select optimal min(distance) item characteristics C* 

from B* and move to step 11. 
Step 10: Select optimal min(distance) item characteristics C* 

from cSubSet. 

Step 11: Apply MUSCLE 0 based on optimized characteristics 
C*. 

Step 12: Calculate evaluation factors q*, tc*, z*, e* and r*. 
Step 13: Return evaluation factors for comparison with other 

MSA algorithms. 
Step 14: Stop. 
 
Proposed Hybrid Meta-Heuristic Optimization Algorithm 
(Meta-Heuristic Sub Process) 
 
Algorithm: Proposed Hybrid Meta-Heuristic Optimization 
Algorithm Meta-Heuristic Sub Process to find optimal 
characteristics of MUSCLE for best optimal multiple sequence 
alignment. 

Input: BaliBase v3.0 0 References Data Set with Meta-
Heuristic Knowledge Base B*, qtThreshold and cThreshold 
values from Heuristic Sub Process. 
Output: Optimal MUSCLE Aligned Sequences X* and 
evaluation factors q*, tc*, e*, z* and r*. 

Tabel 3. Evaluation Factors For Default MUSCLE & Proposed Hybrid Meta-Heuristic MUSCLE 
 

# Evaluation Factor Optimal Score(Probability) Optimal Score(%) 

1 
�∗(�) ← �

��
���

�

�=0

 
0.9752 97.52% 

2 

 

0.7500 75.00% 

3 �∗(�) = 	��(�������) 0.0930 9.30% 
4 e*(cpu_time) [seconds] 2.7806 - 
5 �∗(�) ← 	1 − 	� 0.9715 97.15% 

 
Table 4. Comparison between proposed Hybrid Meta-Heuristic vs ClustalW vs ClustalOmega 

 

# MSA 
Sum of Pair 
Score[q*] 

Total Column 
Score[tc*] 

Standard Deviation of 
Similarity Matrix[z*] 

Execution Time (Efficiency) 
(seconds)[e*] 

Reliability 
[r*] 

1 Proposed Hybrid Meta-Heuristic 0.97520 0.7500 0.0930319 2.7806514 0.971 
2 ClustalW 0.87448 0.6875 0.0895399 4.8225229 0.864 
3 ClustalOmega 0.83127 0.5625 0.0879348 6.6604481 0.884 

 

 
 

Figure 10. ClustalOmega and Proposed Hybrid Meta-Heuristic  Figure 11. ClustalOmega and Proposed Hybrid Meta-Heuristic 
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Step 1: Start. 
Step 2: Generate qtSubSet* from B* where [(B*(q) * 0.5 + 

B*(tc) * 0.5) < qt Threshold && (B*(q) * 0.5 + B*(tc) * 
0.5) > 0]. 

Step 3: Calculate extended Q & TC threshold value 
qtThreshold* from qtSubSet*. 

 

 
 

Step 4: Set fuzzy range fuzzyMin = qtThreshold* and 
fuzzyMax = qtThreshold. 

Step 5: Generate qtSubSet** from qtSubSet* where 
[(qtSubSet*(q) * 0.5 + qtSubSet*(tc) * 0.5) >= fuzzyMin 
&& (qtSubSet*(q) * 0.5 + qtSubSet*(tc) * 0.5) <= 
fuzzyMax]. 

Step 6: Generate cSubSet* from qtSubSet** where 
qtSubSet**(dist) <= cThreshold. 

Step 7: If length(cSubSet*) > 0 than move to step 10 else 
continue with step 8. 

Step 8: Generate qtSubSet*** from B* where [B*(q) * 0.5 + 
B*(tc) * 0.5] > 0. 

Step 9: Select optimal min(distance) item characteristics C* 
from qtSubSet*** and move to step 11. 

Step 10: Select optimal min(distance) item characteristics C* 
from cSubSet*. 

Step 11: Apply MUSCLE 0 based on optimized characteristics 
C*. 

Step 12: Calculate evaluation factors q*, tc*, z*, e* and r*. 
Step 13: Return evaluation factors for comparison with other 

MSA algorithms. 
Step 14: Stop. 
 

 
 

Figure 13. Default MUSCLE & Proposed Hybrid Meta-Heuristic 
 

 
 

Figure 14. Default MUSCLE MSA FASTA Output 

 
 

Figure 15. Default MUSCLE & Proposed Hybrid Meta-Heuristic 
 

RESULTS AND DISCUSSION 
 
Unaligned Sequences of Input Data Set (X):Unaligned 
Sequences of BaliBASE Benchmark BB11001 [9] input 
sequences used to perform multiple sequence alignment based 
on various algorithms. 
 

Output Alignment Results (Y*) of Proposed Hybrid Meta-
Heuristic MUSCLE: The result of proposed Hybrid Meta-
Heuristic MUSCLE Algorithm. 
 

Results(Y*) of ClustalW & Proposed Hybrid Meta-
Heuristic MUSCLE: The result of cluatalW and proposed 
Hybrid Meta-Heruistic MUSCLE Algorithm. 
 
Results(Y*) of ClustalOmega & Proposed Hybrid Meta-
Heuristic MUSCLE: The result of cluatalOmega and 
proposed Hybrid Meta-Heruistic MUSCLE Algorithm. 
 
Results(Y*) of Default MUSCLE & Proposed Hybrid 
Meta-Heuristic MUSCLE: The result of default MUSCLE 
and proposed Hybrid Meta-Heruistic MUSCLE Algorithm. 
 

Comparison between Proposed Hybrid Meta-Heuristic vs 
ClustalW vs ClustalOmega 

 

 
 

Figure 16. Comparison between Proposed Hybird Meta-Heuristic 
MUSCLE vs ClustalW vs ClustalOmega 
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Conclusion 

 
Genetic MSA algorithms are based on traditional approaches, 
which have lack of biological comparison using genetic 
characteristics, those are actual base of genetic mutation 
between different sequences. Characteristics based MUSCLE 
Algorithm is best to overcome this problem, because 
MUSCLE configuration provides various genetic benefits, but 
to choose best configuration need to create best optimization 
algorithm with intelligence and scientific approach. The 
proposed hybrid meta-heuristic optimization algorithm provide 
solution to overcome this problem and also increase 
knowledge base with the help machine learning. This proposed 
system generates best result for similar characteristics 
sequences and it’s also work better for different characteristics 
sequences by comparison various judgement factors those are 
able to modify in future. 
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