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ABSTRACT 
 

Clustering becomes difficult due to the increasing sparsity of such data, as well as the increasing difficulty in distinguishing 
distances between data points. The proposed method called “kernel trick” and “Collective Neighbour Clustering”, which takes 
as input measures of correspondence between pairs of data points. Real-valued hubs are exchanged between data points until a 
high-quality set of patterns and corresponding clusters gradually emerges (Aggarwal et al., 2015). To validate our theory by 
demonstrating that hubness is a high-quality measure of point centrality within a high dimensional information cluster, and by 
proposing several hubness-based clustering algorithms, showing that main hubs can be used effectively as cluster prototypes or 
as guides during the search for centroid-based cluster patterns (Gnanabaskaran et al., 2011). Experimental results demonstrate 
the good performance of our proposed algorithms in manifold settings, mainly focused on large quantities of overlapping noise. 
The proposed methods are modified mostly for detecting approximately hyper spherical clusters and need to be extended to 
properly handle clusters of arbitrary shapes (Naveen et al., 2011). For this purpose, we provide an overview of approaches that 
use quality metrics in high-dimensional data visualization and propose systematization based on a thorough literature review. 
We carefully analyze the papers and derive a set of factors for discriminating the quality metrics, visualization techniques, and 
the process itself (David, 2010). The process is described through a reworked version of the well-known information 
visualization pipeline. We demonstrate the usefulness of our model by applying it to several existing approaches that use 
quality metrics, and we provide reflections on implications of our model for future research. High-dimensional data arise 
naturally in many domains, and have regularly presented a great challenge for traditional data-mining techniques, both in terms 
of effectiveness and efficiency (Sembiring et al., 2010). Clustering becomes difficult due to the increasing sparsity of such 
data, as well as the increasing difficulty in distinguishing distances between data points. In this paper we take a novel 
perspective on the problem of clustering high-dimensional data (Singh, 2012). Instead of attempting to avoid the curse of 
dimensionality by observing a lower-dimensional feature subspace, we embrace dimensionality by taking advantage of some 
inherently high-dimensional phenomena. More specifically, we show that hubness, i.e., the tendency of high-dimensional data 
to contain points (hubs) that frequently occur in k-nearest neighbour lists of other points, can be successfully exploited in 
clustering. We validate our hypothesis by proposing several hubness-based clustering algorithms and testing them on high-
dimensional data. Experimental results demonstrate good performance of our algorithms in multiple settings, particularly in the 
presence of large quantities of noise (Mohamed et al., 2009). 
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INTRODUCTION 
 

Clustering in general is an unsupervised process of grouping 
elements together, so that elements assigned to the same 
cluster are more similar to each other than to the remaining 
data points (Aggarwal, 2014). This goal is often difficult to 
achieve in practice. Over the years, various clustering 
algorithms have been proposed, which can be roughly divided 
into four groups: partitional, hierarchical, density-based, and 
subspace algorithms. Algorithms from the fourth group search 
for clusters in some lower-dimensional projection of the  
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original data, and have been generally preferred when dealing 
with data that is high dimensional (Aggarwal et al., 2015). The 
motivation for this preference lies in the observation that 
having more dimensions usually leads to the so-called curse of 
dimensionality, where the performance of many standard 
machine-learning algorithms becomes impaired (Yu, 2013). 
This is mostly due to two pervasive effects: the empty space 
phenomenon and concentration of distances. The former refers 
to the fact that all high-dimensional data sets tend to be sparse, 
because the number of points required to represent any 
distribution grows exponentially with the number of 
dimensions. This leads to bad density estimates for high-
dimensional data, causing difficulties for density-based 
approaches (Gnanabaskaran et al., 2011). 
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The latter is a somewhat counterintuitive property of high-
dimensional data representations. There are two main 
contributions of this paper. First, in experiments on synthetic 
data we show that hubness is a good measure of point 
centrality within a high-dimensional data cluster and that major 
hubs can be used effectively as cluster prototypes (Lance, 
2014). In addition, we propose kernel mapping and collective 
neighbor clustering algorithms and evaluate their performance 
in various high-dimensional and semi-supervised data 
clustering tasks (Naveen, 2011). Clustering problem concerns 
the discovery of homogeneous groups of data according to a 
certain similarity measure. The task of clustering has been 
studied in statistics (Aggarwal, 2014), machine learning 
(Gnanabaskaran, 2011), bioinformatics (Yu, 2013), and more 
recently in databases (Singh et al., 2012). Clustering 
algorithms finds a partition of the points such that points 
within a cluster are more similar to each other than to points in 
different clusters (Karthikeyan, 2014). In traditional clustering 
each dimension is equally weighted when computing the 
distance between points. Most of these algorithms perform 
well in clustering low-dimensional datasets (Gnanabaskaran, 
2011). However, in higher dimensional feature spaces, their 
performance and efficiency deteriorate to a greater extent due 
to the high dimensionality (Lance, 2014). Another difficulty 
we have to face when dealing with clustering is the 
dimensionality of data. In the clustering task, the 
overwhelming problem of high dimensionality presents a dual 
aspect. First, the presence of irrelevant attributes eliminates 
any hope on clustering. 
 
Clustering suffers from the curse of dimensionality problem in 
high-dimensional spaces. In high dimensional spaces, it is 
highly likely that, for any given pair of points within the same 
cluster, there exist at least a few dimensions on which the 
points are far apart from each other (David et al., 2010). As a 
consequence, distance functions that equally use all input 
features may not be effective. Furthermore, several clusters 
may exist in different subspaces, comprised of different 
combinations of features. In many real world problems, in fact, 
some points are correlated with respect to a given set of 
dimensions, and others are correlated with respect to different 
dimensions (Karthikeyan, 2014). Each dimension could be 
relevant to at least one of the clusters. The problem of high 
dimensionality could be addressed by requiring the user to 
specify a subspace (i.e., subset of dimensions) for cluster 
analysis. However, the identification of subspaces by the user 
is an error-prone process. More importantly, correlations that 
identify clusters in the data are likely not to be known by the 
user (Guangtao et al., 2012). Indeed, we desire such 
correlations, and induced subspaces, to be part of the findings 
of the clustering process itself. An alternative solution to high 
dimensional settings consists in reducing the dimensionality of 
the input space. Traditional feature selection algorithms select 
certain dimensions in advance. Methods such as Principal 
Component Analysis (PCA) (or Karhunen– Loeve 
transformation) transform the original input space into a lower 
dimensional space by constructing dimensions that are linear 
combinations of the given features, and are ordered by non 
increasing variance (Hua-Liang, 2010). While PCA may 
succeed in reducing the dimensionality, with as major 
drawbacks. The new dimensions can be difficult to interpret, 
making it hard to understand clusters in relation to the original 
space. Furthermore, all global dimensionality reduction 
techniques (like PCA) are not effective in identifying clusters 
that may exist in different subspaces (Aggarwal, 2014). 

RELATED WORK 
 
Distributed Data Mining (DDM) is a dynamically growing area 
within the broader field of KDD. Generally, many algorithms 
for distributed data mining are based on algorithms which were 
originally developed for parallel data mining. In (Aggarwal, 
2014), some state-of-the-art research results related to DDM 
are summarized. Whereas there already exist algorithms for 
distributed classification and association rules, there is a lack 
of algorithms for distributed clustering. In (Lance et al., 2014) 
the “collective hierarchical clustering algorithm” for vertically 
distributed data sets was proposed which applies single link 
clustering. In contrast to this approach, we concentrate in this 
paper on horizontally distributed data sets. In (Gnanabaskaran, 
2011) the authors presented a technique for centroid-based 
hierarchical clustering for high-dimensional, horizontally 
distributed data sets by merging clustering hierarchies 
generated locally. Unfortunately, this approach can only be 
applied for distance-based hierarchical distributed clustering 
approaches, whereas our aim is to introduce a generally 
applicable approach. In (Naveen et al., 2011), density-based 
distributed clustering algorithms were presented which are 
based on the density-based partitioning clustering algorithm 
DBSCAN. The idea of these approaches is to determine 
suitable local objects representing several other local objects. 
Based on these representatives a global DBSCAN algorithm is 
carried out. These approaches are tailor-made for the density-
based distributed clustering algorithm DBSCAN. The goal of 
this paper is to introduce an approach which is generally 
applicable to DDM. To get specific, we demonstrate the 
benefits of our approach for distributed clustering algorithms. 
In contrast to the above specific distributed clustering 
approaches, our approach is not susceptible to an increasing 
number of local clients (Sembiring et al., 2010). It does only 
depend on the overall allowed transmission cost, i.e. on the 
number of bytes we are allowed to transmit from the local 
clients to a server. In order to keep these transmission cost low, 
we introduce in the following section a suitable client-side 
approximation technique for describing high-dimensional 
feature vectors (Singh et al., 2012). 
 
Dimensionality reduction is a technique that helps solving the 
high dimensionality problem and has been extensively studied 
and widely applied in text analysis (Aggarwal et al., 2014), 
face recognition (Yu et al., 2013), and microarray gene 
expression analysis (Singh et al., 2012) where data are usually 
expressed as vectors of high dimension. Dimensionality 
reduction is also the key technique for data compression that 
enables efficient information storage and retrieval (Lance et al., 
2014), as well as for data visualization, where high-
dimensional data are mapped to 2D or 3D spaces helping the 
user gain a qualitative understanding of the information 
(Gnanabaskaran, 2011). A dimensionality reduction technique 
finds low-dimensional structures of data hidden in high-
dimensional observations. Feature selection (Naveen et al., 
2011) and feature reduction (Sembiring et al., 2010) are two 
dimensionality reduction solutions. Feature selection reduces 
dimensionality by selecting a subset of existing features. Thus, 
the physical interpretation of each feature is preserved in the 
reduced space. However, in removing many features prior to 
learning from the data, information about the underlying data 
may be lost. Feature reduction reduces dimensionality by 
combining features with linear or nonlinear transformations 
(Mohamed et al., 2009). In (Aggarwal et al., 2015) authors are 
discuss very general techniques for projected clustering which 
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are able to construct clusters in arbitrarily aligned subspaces of 
lower dimensionality. The subspaces are specific to the clusters 
themselves. This definition is substantially more general and 
realistic than currently available techniques which limit the 
method to only projections from the original set of attributes 
(Gnanabaskaran et al., 2011). The generalized projected 
clustering technique may also be viewed as a way of trying to 
redefine clustering for high dimensional applications by 
searching for hidden subspaces with clusters which are created 
by inter-attribute correlations. In (Yu et al., 2013) authors used 
an application domains such as life sciences, e.g. molecular 
biology produce a tremendous amount of data which can no 
longer be managed without the help of efficient and effective 
data mining methods. One of the primary data mining tasks is 
clustering. However, traditional clustering algorithms often fail 
to detect meaningful clusters because of the high dimensional, 
inherently sparse feature space of most real-world data sets 
(Aggarwal et al., 2014). Nevertheless, the data sets often 
contain clusters hidden in various subspaces of the original 
feature space (Mohamed et al., 2009). A pre-processing step 
for traditional clustering algorithms, which detects all 
interesting subspaces of high-dimensional data containing 
clusters. For this purpose, we define a quality criterion for the 
interestingness of a subspace and propose an efficient 
algorithm called RIS (Ranking Interesting Subspaces) to 
examine all such subspaces. In (Gnanabaskaran, 2011) 
discussed the primary data mining tasks is clustering. However, 
traditional clustering algorithms often fail to detect meaningful 
clusters because most real-world data sets are characterized by 
a high dimensional, inherently sparse data space (Singh et al., 
2012). Nevertheless, the data sets often contain interesting 
clusters which are hidden in various subspaces of the original 
feature space.  
 
In (Lance et al., 2014) authors improved the conclusive 
evaluation and comparison is challenged by three major issues. 
First, there is no ground truth that describes the "true" clusters 
in real world data. Second, a large variety of evaluation 
measures have been used that reflect different aspects of the 
clustering result (Hua-Liang, 2010). Finally, in typical 
publications authors have limited their analysis to their 
favoured paradigm only, while paying other paradigms little or 
no attention. In (Naveen et al., 2011) authors proposed the 
dimensionality curse from the point of view of the distance 
metrics which are used to measure the similarity between 
objects.  
 
The specifically examine the behaviour of the commonly used 
Lk norm and show that the problem of meaningfulness in high 
dimensionality is sensitive to the value of k. For example, this 
means that the Manhattan distance metric L1-norm is 
consistently more preferable than the Euclidean distance metric 
L2-norm for high dimensional data mining applications (10). 
Using the intuition derived from our analysis, we introduce and 
examine a natural extension of the Lk-norm to fractional 
distance metrics. In (Sembiring, 2010) authors considered a 
nearest neighbour search and many other numerical data 
analysis tools most often rely on the use of the Euclidean 
distance. When data are high dimensional, however, the 
Euclidean distances seem to concentrate; all distances between 
pairs of data elements seem to be very similar. Therefore, the 
relevance of the Euclidean distance has been questioned in the 
past, and fractional norms (Murkowski-like norms with an 
exponent less than one) were introduced to fight the 
concentration phenomenon (Guangtao Wang, 2012). 

HIGH DIMENSIONAL DATA CLUSTERING 
 
Clustering in high-dimensional spaces is a difficult problem 
which is recurrent in many domains, for example in image 
analysis. The difficulty is due to the fact that high-dimensional 
data usually live in different low-dimensional subspaces 
hidden in the original space (Aggarwal et al., 2012). This 
paper presents a family of Gaussian mixture models designed 
for high-dimensional data which combine the ideas of 
dimension reduction and parsimonious modelling. These 
models give rise to a clustering method based on the 
Expectation-Maximization algorithm which is called High-
Dimensional Data Clustering (HDDC) (Gnanabaskaran, 2011). 
In order to correctly fit the data, HDDC estimates the specific 
subspace and the intrinsic dimension of each group. Our 
experiments on artificial and real datasets show that HDDC 
outperforms existing methods for clustering high-dimensional 
data. High-dimensional data, i.e., data described by a large 
number of attributes, pose specific challenges to clustering 
(Yu, 2013).  
 
The so-called ‘curse of dimensionality’, coined originally to 
describe the general increase in complexity of various 
computational problems as dimensionality increases, is known 
to render traditional clustering algorithms ineffective (Lance et 
al., 2014). The curse of dimensionality, among other effects, 
means that with increasing number of dimensions, a loss of 
meaningful differentiation between similar and dissimilar 
objects is observed. As high-dimensional objects appear almost 
alike, new approaches for clustering are required (Naveen et 
al., 2011). Consequently, recent research has focused on 
developing techniques and clustering algorithms specifically 
for high-dimensional data. Still, open research issues remain. 
Clustering is a data mining task devoted to the automatic 
grouping of data based on mutual similarity. Each cluster 
group’s objects that are similar to one another, whereas 
dissimilar objects are assigned to different clusters, possibly 
separating out noise (Sembiring et al., 2010). In this manner, 
clusters describe the data structure in an unsupervised manner, 
i.e., without the need for class labels. A number of clustering 
paradigms exist that provide different cluster models and 
different algorithmic approaches for cluster detection 
(Mohamed, 2009). Common to all approaches is the fact that 
they require some underlying assessment of similarity between 
data objects. In this article, we provide an overview of the 
effects of high-dimensional spaces, and their implications for 
different clustering paradigms (Singh et al., 2012). 
 

CURSE OF DIMENSIONALITY 
 

The curse of dimensionality refers to various phenomena that 
arise when analyzing and organizing data in high-dimensional 
spaces (often with hundreds or thousands of dimensions) that 
do not occur in low-dimensional settings such as the three-
dimensional physical space of everyday experience (Aggarwal 
et al., 2015). There are multiple phenomena referred to by this 
name in domains such as numerical analysis, sampling, 
combinatory, machine learning, data mining, and databases. 
The common theme of these problems is that when the 
dimensionality increases, the volume of the space increases so 
fast that the available data become sparse (Yu et al., 2013). 
This sparsity is problematic for any method that requires 
statistical significance. In order to obtain a statistically sound 
and reliable result, the amount of data needed to support the 
result often grows exponentially with the dimensionality 
(Gnanabaskaran, 2011).  
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Also, organizing and searching data often relies on detecting 
areas where objects form groups with similar properties; in 
high dimensional data, however, all objects appear to be sparse 
and dissimilar in many ways, which prevents common data 
organization strategies from being efficient (Lance et al., 
2014). The use of the term "curse of dimensionality" in 
machine learning is related to the fact that one can easily 
imagine a target function (to be learned) that is very non-
smooth, for example having an exponential number of modes 
(ups and downs), with respect to dimensionality (the number of 
scalar input variables) (Naveen et al., 2011). Imagine that in 
order to produce a good prediction, our learner needs to 
distinguish (produce a substantially different answer) between 
10 different values of each of n variables (Sembiring et al., 
2010). Then it may need to distinguish between 10^n different 
configurations of the input n-dimensional vector. With n easily 
in the hundreds, thousands or more, this is much more than the 
number of examples one can hope to gather (or even the 
number of atoms in the universe) (Singh et al., 2012). With 
most learning algorithms, and in particular with classical non-
parametric learning algorithms (e.g. nearest-neighbour, Parzen, 
Gaussian kernel SVM, Gaussian kernel Gaussian Process, etc.) 
the learner will need to see at least one example for each of 
these many configurations (at least as many as necessary to 
cover all the variations of configurations of interest), in order 
to produce a correct answer around each of these 
configurations, one that is different from the target value 
required for other nearby configurations (Mohamed, 2009). 
 
PROPOSED WORK 
 
CLIQUE: THE CLASSICAL HIGH-DIMENSIONAL 
ALGORITHM 
 
CLIQUE (Clustering in Quest), to find automatically subspace 
clustering of high dimensional numerical data. It locates 
clusters embedded in subspaces of high dimensional data 
without much user intervention to discern significant sub 
clusters (Aggarwal et al., 2005). CLIQUE first partitions its 
numerical space into units for its grid structure. CLIQUE 
divides the d-dimensional data space into md non-overlapping 
rectangular units. A d-dimensional data point, v, is considered 
in a unit, u, if the value of v in each attribute, is greater than or 
equal to the left boundary of that attribute in u and less than the 
right boundary of that attribute in u (Gnanabaskaran, 2011). 
The selectivity of a unit is defined to be the fraction of total 
data points in the unit. Only units whose selectivity is greater 
than a parameter τ are viewed as dense and retained. The 
definition of dense units applies to all subspaces of the original 
d-dimensional space (Yu et al., 2013). CLIQUE prunes the 
pool of candidates, only keeping the set of dense units to form 
the candidate units in the next level of the dense unit 
generation algorithm (Naveen et al., 2011). To prune the 
candidates, all the subspaces are sorted by their coverage, i.e., 
the fraction of the database that is covered by the dense units in 
it. CLIQUE then forms clusters from the remaining candidate 
units (Lance et al., 2014). Two p-dimensional units u1, u2 are 
connected if they have a common face or if there exists another 
p-dimensional unit us such that u1 is connected to us and u2 is 
connected to us. A cluster is a maximal set of connected dense 
units in p-dimensions (Gnanabaskaran, 2011). 
 

 
 

 

VARIANTS OF CLIQUE 
 
There are two aspects of the CLIQUE algorithm that can be 
improved. The first one is the criterion for the subspace 
selection. The second is the size and resolution of the grid 
structure (Sembiring et al., 2010). The former is addressed by 
the ENCLUS algorithm by using entropy as subspace selection 
criterion. The latter is addressed by the MAFIA algorithm by 
using adaptive grids for fast subspace clustering (Mohamed, 
2009). 
 

 
 
ENCLUS: ENTROPY-BASED APPROACH 
 
The algorithm ENCLUS (Entropy-based Clustering) (Naveen 
et al., 2011) is an adaptation of the CLIQUE that uses a 
different, entropy-based criterion for subspace selection. 
Rather than using the fraction of total points in a subspace as a 
criterion to select subspaces, ENCLUS uses an entropy 
criterion and only those subspaces spanned by attributes (Singh 
et al., 2012). An analogous monotonicity condition or Apriori 
property also exists in terms of entropy. If a p-dimensional 
subspace has low entropy, then so does any (p−1)-dimensional 
projections of this subspace. A significant limitation of 
ENCLUS is its extremely high computational cost, especially 
in terms of computing the entropy of subspaces (Mohamed, 
2009). However, this cost also yields the benefit that this 
approach has increased sensitivity to detect clusters especially 
extremely dense small ones (Aggarwal et al., 2005).  
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MAFIA: ADAPTIVE GRIDS IN HIGH DIMENSIONS 
 
MAFIA (Merging of Adaptive Finite Intervals) proposed by 
Goil et al. (Aggarwal et al., 2005) is a descendant of CLIQUE. 
Instead of using a fixed size cell grid structure with an equal 
number of bins in each dimension, MAFIA constructs adaptive 
grids to improve subspace clustering and also uses parallelism 
on a shared-nothing architecture to handle massive data sets 
(Yu et al., 2013). MAFIA proposes an adaptive grid of bins in 
each dimension. Then using an Apriori algorithm, dense 
intervals are merged to create clusters in the higher 
dimensional space (Gnanabaskaran, 2011). The adaptive grid 
is created by partitioning each dimension independently based 
on the distribution (i.e., the histogram) observed in that 
dimension, merging intervals that have the same observed 
distribution, and pruning those intervals with low density 
(Naveen et al., 2011). This pruning during the construction of 
the adaptive grid reduces the overall computation of the 
clustering step (Lance et al., 2014). 
 
ALGORITHM FOR MAFIA ALGORITHM 
 

 Do one scan of the data to construct adaptive grids in 
each dimension.  

 Compute the histograms by reading blocks of data into 
memory using bins.  

 Using the histograms to merge bins into a smaller 
number of adaptive variable-size bins, where adjacent 
bins with similar histogram values are combined to 
form larger bins. The bins that have low density of data 
are pruned.  

 Select bins that are α-times (α is a parameter called the 
cluster dominance factor) more densely populated than 
average as p (p = 1 now) candidate dense units (CDUs).  

 Iteratively scan data for higher dimensions, and 
construct new p-CDU from two (p−1) CDUs if they 
share any (p−2)-face, and merge adjacent CDUs into 
clusters.  

 Generate minimal DNF expressions for each cluster 
 

OPTIGRID: DENSITY-BASED OPTIMAL GRID 
PARTITIONING 
 

Hinneburg and Keim proposed OptiGrid (Optimal GRID-
Clustering) (Guangtao et al., 2012) to address several aspects 
of the “curse of dimensionality”: noise, scalability of the grid 
construction, and selecting relevant attributes by optimizing 
the density function over the data space. OptiGrid uses density 
estimations to determine the centers of clusters as the 
clustering was done for the DENCLUE algorithm (Aggarwal et 
al., 2014).  
 

 
 

A cluster is a region of concentrated density centered around a 
strong density attractor or local maximum of the density 
function with density above the noise threshold (Yu et al., 
2013). Clusters may also have multiple centers if the centers 
are strong density attractors and there exists a path between 
them above the noise threshold (Naveen et al., 2011). By 
recursively partitioning the feature space into multidimensional 
grids, OptiGrid creates an optimal grid-partition by 
constructing the best cutting hyper planes of the space (Lance 
et al., 2014).  

 
These cutting planes cut the space in areas of low density (i.e. 
local minima of the density function) and preserve areas of 
high density or clusters, specifically the cluster centers (i.e. 
local maxima of the density function) (Sembiring et al., 2010). 
The cutting hyper planes are found using a set of contracting 
linear projections of the feature space. The contracting 
projections create upper bounds for the density of the planes 
orthogonal to them (Singh et al., 2012). Namely, for any point, 
x, in a contracting projection, P, then for any point y such that 
P(y) = x, the density of y is at most the density of x (10). 

 
ALGORITHM FOR OPTIGRID ALGORITHM 
 
INPUT: data set D, q, min cut score  
 

 Determine a set of contracting projections P = {P0, P1... 
Pk} and calculate all the projections of the data set D: 
Pi (D), i = 1, 2... K;  

 Initialize a list of cutting planes BEST CUT � Φ, CUT 

⇐ Φ;  
 for i=0 to k do  

 CUT ⇐best local cuts Pi (D);  

 CUT SCORE ⇐Score best local cuts Pi (D);  
 Insert all the cutting planes with a score ≥ min cutscore 

into BEST CUT;  
 if BEST CUT = Φ then  
 return D as a cluster;  
 else  
 Select the q cutting planes of the highest score from 

BEST CUT and construct a multidimensional grid G 
using the q cutting planes;  

 Insert all data points in D into G and determine the 
highly populated grid cells in G; add these cells to the 
set of clusters C;  

 Refine C;  
 for all clusters Ci in C do  
 Do the same process with data set Ci;  
 end for  
 end if  
 end for 

 
O-CLUSTER: A SCALABLE APPROACH 
 
Milenova et al. proposed a O-cluster (Orthogonal partitioning 
Clustering) to address three limitations of OptiGrid: scalability 
in terms of data relative to memory size, lack of clear criterion 
to determine if a cutting plane is optimal or not, and sensitivity 
to threshold parameters for noise and cut plane density (Yu et 
al., 2013). O-Clusters address the first limitation by using a 
random sampling technique on the original data and a small 
buffer size. Only partitions that are not resolved (i.e., 
ambiguous) have data points maintained in the buffer (Lance et 
al., 2014). As a variant of OptiGrid, O-Cluster uses an axis-
parallel partitioning strategy to locate high density areas in the 
data (Singh et al., 2012). To do so, O-Cluster uses contracting 
projections, but also proposes the use of a statistical test to 
validate the quality of a cutting plane (Naveen et al., 2011).  
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The statistical test checks for statistical significance between 
the difference in the density of the peaks and a valley when the 
valley separates the two peaks using a standard χ2 test 
(Sembiring et al., 2010). If statistical significance is found, the 
cutting plane would then be through such a valley. O-Cluster is 
also a recursive method. After testing the splitting points for all 
projections in a partition, the optimal one is chosen to partition 
the data. The algorithm then searches for cutting planes in the 
new partitions (Mohamed, 2009). 
 
ALGORITHM FOR O-CLUSTER: A SCALABLE 
APPROACH 
 

 Load data buffer.  
 Compute histograms for active partitions.  
 Find “best” splits for active partitions.  
 Flag ambiguous and “frozen” partitions.  
 Split active partitions.  
 Reload buffer. 

 
EXPERIMENTS 
 
 In this section, we empirically demonstrate that our proposed 
high dimensional data clustering algorithm is both efficient and 
effective.  
 
DATASETS 
 
The data sets used in our experiments include six UCI data 
sets1. Here is some basic information of those data sets. Table 
5 summarizes the basic information of those data sets. 
 

 Balance: This data set was generated to model 
psychological experimental results. There are totally 
625 examples that can be classified as having the 
balance scale tip to the right, tip to the left, or be 
balanced. 

 Iris: This data set contains 3 classes of 50 instances 
each, where each class refers to a type of iris plant. 

 Ionosphere: It is a collection of the radar signals 
belonging to two classes. The data set contains 351 
objects in total, which are all 34-dimensional. 

 Soybean: It is collected from the Michalski’s famous 
soybean disease databases, which contains 562 
instances from 19 classes. 

 
EXPERIMENTAL RESULTS 
 
 

Datasets Size Classes Dimensions 

Balance 625 3 4 
Iris 150 3 4 

Ionosphere 351 2 34 
Soybean 562 19 35 

 
BALANCE DATASET RESULTS 
 
The above graph shows that performance of Balance dataset. 
The Accuracy of O-CLUSTER algorithm is 90.07 which is 
higher when compare to other four (CLIQUE, ENCLUS, 
MAFIA, OPTIGRID) algorithms. The Precision of OPTIGRID 
algorithm is 90.67 which is higher when compare to other four 
(CLIQUE, ENCLUS, MAFIA, O-CLUSTER) algorithms. The 
Recall of CLIQUE algorithm is 92.77 which is higher when 
compare to other four (ENCLUS, MAFIA, O-CLUSTER, 

OPTIGRID) algorithms. The F-Measure of CLIQUE algorithm 
is 90.89 which is higher when compare to other four 
(ENCLUS, MAFIA, O-CLUSTER, OPTIGRID) algorithms. 
 

 

Balance Dataset 

Algorithm  Accuracy Precision Recall F-Measure 
CLIQUE 89.45 87.91 92.77 90.89 
ENCLUS 79.91 76.08 74.78 86.56 
MAFIA 70.92 79.67 79.89 85.78 

OPTIGRID 84.67 90.67 86.78 77.67 
O-CLUSTER 90.07 83.66 82.33 72.88 

 

 
 

IRIS DATASET RESULTS 
 
 

Iris Dataset 

 Algorithm Accuracy Precision Recall F-Measure 
CLIQUE 70.45 85.91 94.77 88.89 
ENCLUS 70.91 86.08 94.78 60.56 
MAFIA 70.92 90.67 91.89 85.78 

OPTIGRID 80.67 96.67 70.78 88.67 
O-CLUSTER 90.78 78.76 82.54 90.89 

 
 

 
 

The above graph shows that performance of Iris dataset. The 
Accuracy of O-CLUSTER algorithm is 90.78 which is higher 
when compare to other four (CLIQUE, ENCLUS, MAFIA, 
OPTIGRID) algorithms. The Precision of OPTIGRID 
algorithm is 96.67 which is higher when compare to other four 
(CLIQUE, ENCLUS, MAFIA, O-CLUSTER) algorithms. The 
Recall of ENCLUS algorithm is 94.78 which is higher when 
compare to other four (CLIQUE, O-CLUSTER, MAFIA, 
OPTIGRID) algorithms. The F-Measure of O-CLUSTER 
algorithm is 90.89 which is higher when compare to other four 
(CLIQUE, ENCLUS, MAFIA, OPTIGRID) algorithms. 
 
IONOSPHERE DATASET RESULTS 
 

Ionosphere Dataset 

Algorithm  Accuracy Precision Recall F-Measure 
CLIQUE 79.45 88.91 84.77 88.89 
ENCLUS 74.91 90.08 90.78 70.56 
MAFIA 80.98 76.67 72.89 85.78 

OPTIGRID 88.67 70.67 77.78 90.67 
O-CLUSTER 90.56 83.45 88.34 75.89 
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The above graph shows that performance of Ionosphere 
dataset. The Accuracy of O-CLUSTER algorithm is 90.56 
which is higher when compare to other four (CLIQUE, 
ENCLUS, MAFIA, OPTIGRID) algorithms. The Precision of 
ENCLUS algorithm is 90.08 which is higher when compare to 
other four (CLIQUE, O-CLUSTER, MAFIA, OPTIGRID) 
algorithms. The Recall of ENCLUS algorithm is 90.78 which 
is higher when compare to other four (CLIQUE, O-CLUSTER, 
MAFIA, OPTIGRID) algorithms. The F-Measure of 
OPTIGRID algorithm is 90.67 which is higher when compare 
to other four (CLIQUE, ENCLUS, MAFIA, O-CLUSTER) 
algorithms. 
 

SOYBEAN DATASET RESULTS 
 

The above graph shows that performance of Soybean dataset. 
The Accuracy of O-CLUSTER algorithm is 90.08 which is 
higher when compare to other four (CLIQUE, ENCLUS, 
MAFIA, OPTIGRID) algorithms. The Precision of ENCLUS 
algorithm is 90.89 which is higher when compare to other four 
(CLIQUE, O-CLUSTER, MAFIA, OPTIGRID) algorithms.  
 

Soybean Dataset 

 Algorithm Accuracy Precision Recall F-Measure 
CLIQUE 79.89 88.65 84.23 88.34 
ENCLUS 74.03 90.89 90.67 71.23 
MAFIA 81.08 76.32 72.45 85.9 

OPTIGRID 88.54 71.32 77.89 90.56 
O-CLUSTER 90.08 83.78 88.78 75.9 

 

 
 

The Recall of ENCLUS algorithm is 90.67 which is higher 
when compare to other four (CLIQUE, O-CLUSTER, MAFIA, 
OPTIGRID) algorithms. The F-Measure of OPTIGRID 
algorithm is 90.56 which is higher when compare to other four 
(CLIQUE, ENCLUS, MAFIA, O-CLUSTER) algorithms. 
 

Conclusion 
 
The purpose of this article is to present a comprehensive 
classification of different clustering techniques for high 
dimensional data. Clustering high dimensional data sets is a 
ubiquitous task. The incosent growth in the fields of 
communication and technology, there is tremendous growth in 
high dimensional data spaces. It study focuses on issues and 

major drawbacks of existing algorithms (Aggarwal et al., 
2005). As the number of dimensions increase, many clustering 
techniques begin to suffer from the curse of dimensionality, 
de-grading the quality of the results. In high dimensions, data 
becomes very sparse and distance measures become 
increasingly meaningless (Gnanabaskaran, 2011). This 
problem has been studied extensively and there are various 
solutions, each appropriate for different types of high 
dimensional data and data mining procedures (Yu et al., 2013). 
As with any clustering techniques, finding meaningful and 
useful results depends on the selection of the appropriate 
clustering technique (Lance et al., 2014).  
 
In order to do this, one must understand the dataset in a 
domain specific context in order to be able to best evaluate the 
results from various approaches. From the above discussion it 
is observed that the current techniques will suffer with many 
problems (Naveen et al., 2011). To improve the performance 
of the data clustering in high dimensional data, it is necessary 
to perform research in the areas like dimensionality reduction, 
redundancy reduction in clusters and data labelling. The 
feature selection is a complex problem studied by many 
researchers all over the world (Singh et al., 2012). Complexity 
is due to finding a voluminous amounts of High Dimensional 
data, contains irrelevant or redundant features which causes 
difficulties in storage and retrieval. The feature subset 
selection algorithm for high dimensional data works based on 
the clusters that contains features where each cluster treated as 
single feature and hence dimensionality of data is drastically 
reduces. We then used this as a goodness-of-fit measure in the 
context of subspace clustering (Sembiring et al., 2010). The 
resulting subspace clustering method achieved state-of-the art 
clustering accuracy and speed on both simulated and real 
datasets (Aggarwal et al., 2014). Whilst this works well for 
certain applications such as images of faces and motion 
tracking, it may be desirable to develop a more general 
framework for identifying clusters which do not necessarily lie 
in linear subspaces (Yu et al., 2013). Recently, the field of 
multiple manifold clustering has emerged where the aim is to 
find clusters which lie in non-linear manifolds of which 
subspace clustering is a special case (Lance et al., 2014). We 
proposed a new approach to multi-view clustering which takes 
a step towards consolidating supervised and unsupervised 
learning in the multi-view setting. This allows us to model 
more complicated dependencies between the views than the 
usual conditional independence assumption allows 
(Gnanabaskaran, 2011). Our approach can be viewed as an 
extension of subspace clustering in two views and so carries 
with it the same benefits of subspace clustering compared to 
geometric-distance based clustering (Sembiring et al., 2010). 
The field of multi-view clustering where there is a predictive 
relationship between the views has not been well developed 
and so our work represents a significant and novel contribution 
which consolidates supervised and unsupervised approaches to 
multi-view learning (Mohamed, 2009). 
 

FUTURE WORK 
 

Our proposed baseline includes multiple aspects for a fair 
comparison not only in evaluation studies: First, a common 
open source framework with baseline implementations for a 
fair comparison of different algorithms (Aggarwal et al., 
2014). Second, a broad set of evaluation measures for 
clustering quality comparison. Third, a baseline of evaluation 
results for both real world and synthetic data sets with given 
parameter settings for repeatability (Yu et al., 2013). All of 
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this can be downloaded from our website for further research, 
comparison or repeatability. Recent approaches of these 
paradigms enhanced the quality and efficiency, however, could 
reach top results only in few cases. One downside of the 
system is the heavy processing loads especially for high 
dimensions that prompted us to down sample some data 
(Aggarwal et al., 2005). One of the goals in future works will 
be to improve this performance through parallel 
implementations or the use of GPUs (Gnanabaskaran, 2011).  
 
In addition, we plan to further explore the various repeating 
patterns found during the animated transition, such as the 
compression/expansion connection, to better understand their 
connection with the underlying high-dimensional structure 
(Naveen et al., 2011). It deals with removing of irrelevant and 
redundant data or feature set that leads to provide high accurate 
feature as per required target class (Lance et al., 2014). In 
future work, we plan to address the problem of evaluating the 
quality of clustering’s in different subspaces. One approach is 
to choose clusters that maximize the ratio of cluster density 
over expected density for clustering’s with the same 
dimensionality (Singh et al., 2012). The results reported for 
these applications show that use of the method is promising in 
various applications, including dominant and deviant pattern 
detection, collaborative filtering, clustering, bounded error 
compression, and classification (Sembiring et al., 2010). The 
method can also be extended beyond binary attributed datasets 
to general discrete positive valued attribute sets. The 
techniques discussed in this paper extend the applicability of 
outlier detection techniques to high dimensional problems; 
such cases are most valuable from the perspective of data 
mining applications (David et al., 2010). For the future work, 
we plan to explore different types of correlation measures, and 
study some formal properties of feature space. In feature we 
are going to classify the high dimensional data (Karthikeyan et 
al., 2014). Future enhancement of our algorithm will allow 
variable number of clusters at each iteration. Our algorithm 
needs to be more scalable for huge data set (Hua-Liang, 2010). 
We had saved time by using index structure and minimizing 
range queries by focusing on subspaces which are irrelevant 
and a subspace which is very similar to it (Aggarwal et al., 
2014). Time can be saved in executing a single range query. In 
future the performance of clustering is improved by 
considering the time and iteration factors (Yu et al., 2013).   
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